Suppr超能文献

映射未观察到的项目-应答者交互:具有交互图的潜在空间项目反应模型。

Mapping Unobserved Item-Respondent Interactions: A Latent Space Item Response Model with Interaction Map.

机构信息

UNIVERSITY OF CALIFORNIA, LOS ANGELES, Los Angeles, CA, 90095, USA.

Yonsei University, Seoul, South Korea.

出版信息

Psychometrika. 2021 Jun;86(2):378-403. doi: 10.1007/s11336-021-09762-5. Epub 2021 May 3.

Abstract

Classic item response models assume that all items with the same difficulty have the same response probability among all respondents with the same ability. These assumptions, however, may very well be violated in practice, and it is not straightforward to assess whether these assumptions are violated, because neither the abilities of respondents nor the difficulties of items are observed. An example is an educational assessment where unobserved heterogeneity is present, arising from unobserved variables such as cultural background and upbringing of students, the quality of mentorship and other forms of emotional and professional support received by students, and other unobserved variables that may affect response probabilities. To address such violations of assumptions, we introduce a novel latent space model which assumes that both items and respondents are embedded in an unobserved metric space, with the probability of a correct response decreasing as a function of the distance between the respondent's and the item's position in the latent space. The resulting latent space approach provides an interaction map that represents interactions of respondents and items, and helps derive insightful diagnostic information on items as well as respondents. In practice, such interaction maps enable teachers to detect students from underrepresented groups who need more support than other students. We provide empirical evidence to demonstrate the usefulness of the proposed latent space approach, along with simulation results.

摘要

经典的项目反应模型假设所有难度相同的项目在具有相同能力的所有应答者中具有相同的反应概率。然而,这些假设在实践中很可能被违反,而且评估这些假设是否被违反并不简单,因为应答者的能力和项目的难度都没有被观察到。一个例子是教育评估,其中存在未被观察到的异质性,这是由学生的未被观察到的变量引起的,例如文化背景和教养、导师的质量以及学生所获得的其他形式的情感和专业支持,以及其他可能影响反应概率的未被观察到的变量。为了解决这些违反假设的问题,我们引入了一种新的潜在空间模型,该模型假设项目和应答者都嵌入在一个未被观察到的度量空间中,正确反应的概率随着应答者和项目在潜在空间中的位置之间距离的增加而降低。由此产生的潜在空间方法提供了一个交互图,代表了应答者和项目之间的交互作用,并有助于得出有关项目和应答者的有见地的诊断信息。在实践中,这种交互图使教师能够检测到需要比其他学生更多支持的代表性不足的学生。我们提供实证证据来证明所提出的潜在空间方法的有用性,以及模拟结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验