Suppr超能文献

一种新型的3- miRNA网络调控口腔鳞状细胞癌的肿瘤进展。

A novel 3-miRNA network regulates tumour progression in oral squamous cell carcinoma.

作者信息

Patel Aditi, Patel Parina, Mandlik Dushyant, Patel Kaustubh, Malaviya Pooja, Johar Kaid, Swamy Krishna B S, Patel Shanaya, Tanavde Vivek

机构信息

Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India.

Department of Head and Neck Oncology, HCG Cancer Centre, Ahmedabad, Gujarat, India.

出版信息

Biomark Res. 2023 Jun 14;11(1):64. doi: 10.1186/s40364-023-00505-5.

Abstract

BACKGROUND

Late diagnosis is one of the major confounders in oral squamous cell carcinoma (OSCC). Despite recent advances in molecular diagnostics, no disease-specific biomarkers are clinically available for early risk prediction of OSCC. Therefore, it is important to identify robust biomarkers that are detectable using non-invasive liquid biopsy techniques to facilitate the early diagnosis of oral cancer. This study identified potential salivary exosome-derived miRNA biomarkers and crucial miRNA-mRNA networks/underlying mechanisms responsible for OSCC progression.

METHODS

Small RNASeq (n = 23) was performed in order to identify potential miRNA biomarkers in both tissue and salivary exosomes derived from OSCC patients. Further, integrated analysis of The Cancer Genome Atlas (TCGA) datasets (n = 114), qPCR validation on larger patient cohorts (n = 70) and statistical analysis with various clinicopathological parameters was conducted to assess the effectiveness of the identified miRNA signature. miRNA-mRNA networks and pathway analysis was conducted by integrating the transcriptome sequencing and TCGA data. The OECM-1 cell line was transfected with the identified miRNA signature in order to observe its effect on various functional mechanisms such as cell proliferation, cell cycle, apoptosis, invasive as well as migratory potential and the downstream signaling pathways regulated by these miRNA-mRNA networks.

RESULTS

Small RNASeq and TCGA data identified 12 differentially expressed miRNAs in OSCC patients compared to controls. On validating these findings in a larger cohort of patients, miR-140-5p, miR-143-5p, and miR-145-5p were found to be significantly downregulated. This 3-miRNA signature demonstrated higher efficacy in predicting disease progression and clinically correlated with poor prognosis (p < 0.05). Transcriptome, TCGA, and miRNA-mRNA network analysis identified HIF1a, CDH1, CD44, EGFR, and CCND1 as hub genes regulated by the miRNA signature. Further, transfection-mediated upregulation of the 3-miRNA signature significantly decreased cell proliferation, induced apoptosis, resulted in G2/M phase cell cycle arrest and reduced the invasive and migratory potential by reversing the EMT process in the OECM-1 cell line.

CONCLUSIONS

Thus, this study identifies a 3-miRNA signature that can be utilized as a potential biomarker for predicting disease progression of OSCC and uncovers the underlying mechanisms responsible for converting a normal epithelial cell into a malignant phenotype.

摘要

背景

晚期诊断是口腔鳞状细胞癌(OSCC)的主要混杂因素之一。尽管分子诊断技术最近取得了进展,但临床上尚无用于OSCC早期风险预测的疾病特异性生物标志物。因此,识别可通过非侵入性液体活检技术检测到的可靠生物标志物,以促进口腔癌的早期诊断非常重要。本研究确定了潜在的唾液外泌体衍生的miRNA生物标志物以及负责OSCC进展的关键miRNA-mRNA网络/潜在机制。

方法

进行小RNA测序(n = 23),以鉴定OSCC患者组织和唾液外泌体中的潜在miRNA生物标志物。此外,对癌症基因组图谱(TCGA)数据集(n = 114)进行综合分析,对更大的患者队列(n = 70)进行qPCR验证,并与各种临床病理参数进行统计分析,以评估所鉴定的miRNA特征的有效性。通过整合转录组测序和TCGA数据进行miRNA-mRNA网络和通路分析。用所鉴定的miRNA特征转染OECM-1细胞系,以观察其对各种功能机制的影响,如细胞增殖、细胞周期、凋亡、侵袭以及迁移潜能,以及这些miRNA-mRNA网络调节的下游信号通路。

结果

与对照组相比,小RNA测序和TCGA数据在OSCC患者中鉴定出12种差异表达的miRNA。在更大的患者队列中验证这些发现时,发现miR-140-5p、miR-143-5p和miR-145-5p显著下调。这种3-miRNA特征在预测疾病进展方面显示出更高的效力,并且在临床上与不良预后相关(p < 0.05)。转录组、TCGA和miRNA-mRNA网络分析确定HIF1a、CDH1、CD44、EGFR和CCND1为受miRNA特征调节的枢纽基因。此外,转染介导的3-miRNA特征上调显著降低细胞增殖,诱导凋亡,导致G2/M期细胞周期停滞,并通过逆转OECM-1细胞系中的EMT过程降低侵袭和迁移潜能。

结论

因此,本研究确定了一种3-miRNA特征,可作为预测OSCC疾病进展的潜在生物标志物,并揭示了将正常上皮细胞转化为恶性表型的潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa75/10268489/9c4e54dabcb5/40364_2023_505_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验