Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
Magn Reson Med. 2023 Oct;90(4):1657-1671. doi: 10.1002/mrm.29753. Epub 2023 Jun 15.
To obtain better microstructural integrity, interstitial fluid, and microvascular images from multi-b-value diffusion MRI data by using a physics-informed neural network (PINN) fitting approach.
Test-retest whole-brain inversion recovery diffusion-weighted images with multiple b-values (IVIM: intravoxel incoherent motion) were acquired on separate days for 16 patients with cerebrovascular disease on a 3.0T MRI system. The performance of the PINN three-component IVIM (3C-IVIM) model fitting approach was compared with conventional fitting approaches (i.e., non-negative least squares and two-step least squares) in terms of (1) parameter map quality, (2) test-retest repeatability, and (3) voxel-wise accuracy. Using the in vivo data, the parameter map quality was assessed by the parameter contrast-to-noise ratio (PCNR) between normal-appearing white matter and white matter hyperintensities, and test-retest repeatability was expressed by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). The voxel-wise accuracy of the 3C-IVIM parameters was determined by 10,000 computer simulations mimicking our in vivo data. Differences in PCNR and CV values obtained with the PINN approach versus conventional fitting approaches were assessed using paired Wilcoxon signed-rank tests.
The PINN-derived 3C-IVIM parameter maps were of higher quality and more repeatable than those of conventional fitting approaches, while also achieving higher voxel-wise accuracy.
Physics-informed neural networks enable robust voxel-wise estimation of three diffusion components from the diffusion-weighted signal. The repeatable and high-quality biological parameter maps generated with PINNs allow for visual evaluation of pathophysiological processes in cerebrovascular disease.
通过使用物理信息神经网络(PINN)拟合方法,从多 b 值扩散 MRI 数据中获得更好的微观结构完整性、间质流体和微血管图像。
在 3.0T MRI 系统上,对 16 例脑血管病患者分别在两天内采集了具有多个 b 值(IVIM:体素内不相干运动)的全脑反转恢复扩散加权图像。从质量、(2)测试-重测可重复性和(3)体素准确性三个方面比较了 PINN 三组分 IVIM(3C-IVIM)模型拟合方法与传统拟合方法(即非负最小二乘和两步最小二乘)的性能。使用体内数据,通过正常表现白质和白质高信号之间的参数对比噪声比(PCNR)评估参数图质量,通过变异系数(CV)和组内相关系数(ICC)表示测试-重测重复性。通过模拟我们体内数据的 10000 次计算机模拟,确定 3C-IVIM 参数的体素准确性。使用配对 Wilcoxon 符号秩检验评估 PINN 方法与传统拟合方法获得的 PCNR 和 CV 值之间的差异。
与传统拟合方法相比,PINN 衍生的 3C-IVIM 参数图质量更高、可重复性更好,同时也具有更高的体素准确性。
物理信息神经网络能够从扩散加权信号中稳健地估计三个扩散分量。PINN 生成的可重复且高质量的生物参数图允许对脑血管病中的病理生理过程进行可视化评估。