Department of Materials, The University of Manchester, M13 9PL Manchester, United Kingdom.
National Graphene Institute, The University of Manchester, M13 9PL Manchester, United Kingdom.
ACS Nano. 2023 Jun 27;17(12):11583-11592. doi: 10.1021/acsnano.3c01698. Epub 2023 Jun 15.
Using graphene as a tunable optical material enables a series of optical devices such as switchable radar absorbers, variable infrared emissivity surfaces, or visible electrochromic devices. These devices rely on controlling the charge density on graphene with electrostatic gating or intercalation. In this paper, we studied the effect of ionic liquid intercalation on the long-term performance of optoelectronic devices operating within a broad infrared wavelength range. Our spectroscopic and thermal characterization results reveal the key limiting factors for the intercalation process and the performance of the infrared devices, such as the electrolyte ion-size asymmetry and charge distribution scheme and the effects of oxygen. Our results provide insight for the limiting mechanism for graphene applications in infrared thermal management and tunable heat signature control.
使用石墨烯作为可调谐光学材料,可以实现一系列光学器件,如可切换雷达吸波材料、可变红外发射率表面或可见电致变色器件。这些器件依赖于通过静电门控或插层来控制石墨烯上的电荷密度。在本文中,我们研究了离子液体插层对在宽红外波长范围内工作的光电设备的长期性能的影响。我们的光谱和热特性分析结果揭示了插层过程和红外器件性能的关键限制因素,例如电解质离子尺寸不对称性和电荷分布方案以及氧的影响。我们的研究结果为石墨烯在红外热管理和可调热信号控制中的应用的限制机制提供了深入的见解。