Tang Kechao, Wang Xi, Dong Kaichen, Li Ying, Li Jiachen, Sun Bo, Zhang Xiang, Dames Chris, Qiu Chengwei, Yao Jie, Wu Junqiao
Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
Division of Materials Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Adv Mater. 2020 Sep;32(36):e1907071. doi: 10.1002/adma.201907071. Epub 2020 Jul 23.
Thermal radiation from a black body increases with the fourth power of absolute temperature (T ), an effect known as the Stefan-Boltzmann law. Typical materials radiate heat at a portion of this limit, where the portion, called integrated emissivity (ε ), is insensitive to temperature (|dε /dT| ≈ 10 °C ). The resultant radiance bound by the T law limits the ability to regulate radiative heat. Here, an unusual material platform is shown in which ε can be engineered to decrease in an arbitrary manner near room temperature (|dε /dT| ≈ 8 × 10 °C ), enabling unprecedented manipulation of infrared radiation. As an example, ε is programmed to vary with temperature as the inverse of T , precisely counteracting the T dependence; hence, thermal radiance from the surface becomes temperature-independent, allowing the fabrication of flexible and power-free infrared camouflage with unique advantage in performance stability. The structure is based on thin films of tungsten-doped vanadium dioxide where the tungsten fraction is judiciously graded across a thickness less than the skin depth of electromagnetic screening.
黑体的热辐射随绝对温度(T)的四次方增加,这一效应被称为斯特藩 - 玻尔兹曼定律。典型材料辐射的热量仅为该极限的一部分,其中这一部分被称为积分发射率(ε),它对温度不敏感(|dε /dT| ≈ 10 °C)。由T定律限制的辐射率限制了调节辐射热的能力。在此,展示了一种特殊的材料平台,其中ε可以被设计成在室温附近以任意方式减小(|dε /dT| ≈ 8 × 10 °C),从而实现对红外辐射前所未有的操控。例如,ε被设定为随温度呈T的倒数变化,精确抵消了对T的依赖性;因此,表面的热辐射率变得与温度无关,这使得能够制造出在性能稳定性方面具有独特优势的柔性且无需电源的红外伪装。该结构基于掺杂钨的二氧化钒薄膜,其中钨的含量在小于电磁屏蔽趋肤深度的厚度范围内经过精心分级。