Suppr超能文献

血液的光谱化学分析结合化学计量学技术用于检测骨质疏松-肌少症。

Spectrochemical analysis of blood combined with chemometric techniques for detecting osteosarcopenia.

机构信息

Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, 59075-970, Brazil.

Federal Institute of Education, Science and Technology of Sertão Pernambucano, Floresta, 56400-000, Brazil.

出版信息

Sci Rep. 2023 Jun 15;13(1):9686. doi: 10.1038/s41598-023-36834-6.

Abstract

Among several complications related to physiotherapy, osteosarcopenia is one of the most frequent in elderly patients. This condition is limiting and quite harmful to the patient's health by disabling several basic musculoskeletal activities. Currently, the test to identify this health condition is complex. In this study, we use mid-infrared spectroscopy combined with chemometric techniques to identify osteosarcopenia based on blood serum samples. The purpose of this study was to evaluate the mid-infrared spectroscopy power to detect osteosarcopenia in community-dwelling older women (n = 62, 30 from patients with osteosarcopenia and 32 healthy controls). Feature reduction and selection techniques were employed in conjunction with discriminant analysis, where a principal component analysis with support vector machines (PCA-SVM) model achieved 89% accuracy to distinguish the samples from patients with osteosarcopenia. This study shows the potential of using infrared spectroscopy of blood samples to identify osteosarcopenia in a simple, fast and objective way.

摘要

在与物理治疗相关的几种并发症中,老年患者中最常见的是骨质疏松肌少症。这种情况会限制并严重损害患者的健康,使他们无法进行几项基本的肌肉骨骼活动。目前,识别这种健康状况的测试很复杂。在这项研究中,我们使用中红外光谱结合化学计量技术,根据血清样本识别骨质疏松肌少症。本研究的目的是评估中红外光谱在检测社区居住的老年女性(n=62,30 名骨质疏松肌少症患者和 32 名健康对照者)中骨质疏松肌少症的能力。我们采用特征减少和选择技术与判别分析相结合,其中主成分分析与支持向量机(PCA-SVM)模型的准确率达到 89%,可区分骨质疏松肌少症患者的样本。本研究表明,使用血液样本的红外光谱以简单、快速和客观的方式识别骨质疏松肌少症具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16bb/10272198/9ee838383224/41598_2023_36834_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验