Suppr超能文献

基于中红外光谱结合化学计量模型的无损快速鉴别摩洛哥椰枣品种的方法评估。

Assessment of a Nondestructive Method for Rapid Discrimination of Moroccan Date Palm Varieties via Mid-Infrared Spectroscopy Combined with Chemometric Models.

机构信息

Laboratory of Analytical Chemistry & Bromatology, Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.

Laboratory of Chemical Processes and Applied Materials, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco.

出版信息

J AOAC Int. 2021 Dec 11;104(6):1710-1718. doi: 10.1093/jaoacint/qsab068.

Abstract

BACKGROUND

Morocco is an important world producer and consumer of several varieties of date palm. In fact, the discrimination between varieties remains difficult and requires the use of complex and high-cost techniques.

OBJECTIVE

We evaluated in this work the potential of mid-IR (MIR) spectroscopy and chemometric models to discriminate eight date palm varieties.

METHOD

Four chemometric models were applied for the analysis of the spectral data, including principal-component analysis (PCA), support-vector machine discriminant analysis (SVM-DA), linear discriminant analysis (LDA), and partial-least-squares (PLS) analysis. MIR spectroscopic data were recorded from the wavenumber range 4000-600 cm-1, with a spectral resolution of 4 cm-1.

RESULTS

The discriminant analysis was performed by LDA and SVM-DA with a 100% correct classification rate for the date mesocarp. PLS analysis was applied as a complementary chemometric tool aimed at quantifying moisture content; the validation of this model shows a good predictive capacity with a regression coefficient of 84% and a root-mean-square error of cross-validation of 0.50.

CONCLUSIONS

The present study clearly demonstrates that MIR spectroscopy combined with chemometric approaches constitutes a promising analytical method to classify date palms according to their varietal origin and to establish a regression model for predicting moisture content.

HIGHLIGHTS

An alternative analytical method to discriminate date palm cultivars by FTIR-attenuated total reflection spectroscopy coupled with chemometric approaches is described.

摘要

背景

摩洛哥是世界上重要的几种枣椰品种的生产国和消费国之一。事实上,品种之间的区分仍然很困难,需要使用复杂且昂贵的技术。

目的

我们在这项工作中评估了中红外(MIR)光谱和化学计量学模型区分八种枣椰品种的潜力。

方法

应用了四种化学计量学模型对光谱数据进行分析,包括主成分分析(PCA)、支持向量机判别分析(SVM-DA)、线性判别分析(LDA)和偏最小二乘(PLS)分析。MIR 光谱数据记录的波数范围为 4000-600 cm-1,光谱分辨率为 4 cm-1。

结果

采用 LDA 和 SVM-DA 进行判别分析,对枣椰果肉的分类准确率达到 100%。PLS 分析作为一种补充化学计量工具,旨在定量测定水分含量;该模型的验证表明具有良好的预测能力,回归系数为 84%,交叉验证的均方根误差为 0.50。

结论

本研究清楚地表明,MIR 光谱结合化学计量学方法构成了一种有前途的分析方法,可以根据品种来源对枣椰进行分类,并建立预测水分含量的回归模型。

重点

本文描述了一种通过傅里叶变换衰减全反射(FTIR-ATR)光谱结合化学计量学方法来区分枣椰品种的替代分析方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验