基于年龄结构的数学模型对 COVID-19 早期大流行最优接种策略的研究:以美国为例。

Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA.

机构信息

Department of Mathematics, New Mexico Tech, New Mexico, 87801, USA.

出版信息

Math Biosci Eng. 2023 Apr 19;20(6):10828-10865. doi: 10.3934/mbe.2023481.

Abstract

In this paper we study different vaccination strategies that could have been implemented for the early COVID-19 pandemic. We use a demographic epidemiological mathematical model based on differential equations in order to investigate the efficacy of a variety of vaccination strategies under limited vaccine supply. We use the number of deaths as the metric to measure the efficacy of each of these strategies. Finding the optimal strategy for the vaccination programs is a complex problem due to the large number of variables that affect the outcomes. The constructed mathematical model takes into account demographic risk factors such as age, comorbidity status and social contacts of the population. We perform simulations to assess the performance of more than three million vaccination strategies which vary depending on the vaccine priority of each group. This study focuses on the scenario corresponding to the early vaccination period in the USA, but can be extended to other countries. The results of this study show the importance of designing an optimal vaccination strategy in order to save human lives. The problem is extremely complex due to the large amount of factors, high dimensionality and nonlinearities. We found that for low/moderate transmission rates the optimal strategy prioritizes high transmission groups, but for high transmission rates, the optimal strategy focuses on groups with high CFRs. The results provide valuable information for the design of optimal vaccination programs. Moreover, the results help to design scientific vaccination guidelines for future pandemics.

摘要

在本文中,我们研究了在 COVID-19 早期大流行期间可能实施的不同疫苗接种策略。我们使用基于微分方程的人口流行病学数学模型来研究在疫苗供应有限的情况下各种疫苗接种策略的效果。我们使用死亡人数作为衡量这些策略的效果的指标。由于影响结果的变量众多,因此找到疫苗接种计划的最佳策略是一个复杂的问题。所构建的数学模型考虑了人口的年龄、合并症状况和社会接触等人口统计学风险因素。我们进行了模拟,以评估超过三百万种不同疫苗接种策略的性能,这些策略因每组疫苗的优先级而异。本研究主要关注美国早期疫苗接种期间的情况,但可以扩展到其他国家。本研究的结果表明,为了拯救生命,设计最佳疫苗接种策略至关重要。由于涉及大量因素、高维度和非线性,因此问题非常复杂。我们发现,对于低/中度传播率,最佳策略优先考虑高传播群体,但对于高传播率,最佳策略则侧重于具有高病死率的群体。这些结果为最佳疫苗接种计划的设计提供了有价值的信息。此外,这些结果有助于为未来的大流行设计科学的疫苗接种指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffef/11216547/36d73b916b7d/nihms-2001558-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索