基于数字病理学和深度学习对HR/HER2乳腺癌的临床病理特征、多组学事件及预后进行预测
Prediction of clinicopathological features, multi-omics events and prognosis based on digital pathology and deep learning in HR/HER2 breast cancer.
作者信息
Hu Jia, Lv Hong, Zhao Shen, Lin Cai-Jin, Su Guan-Hua, Shao Zhi-Ming
机构信息
Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
出版信息
J Thorac Dis. 2023 May 30;15(5):2528-2543. doi: 10.21037/jtd-23-445. Epub 2023 May 23.
BACKGROUND
Breast cancer has the highest incidence and mortality rates among women worldwide. Hormone receptor (HR)/human epidermal growth factor receptor 2 (HER2) breast cancer is the most common molecular subtype, accounting for 50-79% of breast cancers. Deep learning has been widely used in cancer image analysis, especially for predicting targets related to precise treatment and patient prognosis. However, studies focusing on therapeutic target and prognosis predicting in HR/HER2 breast cancer are lacking.
METHODS
This study retrospectively collected hematoxylin and eosin (H&E)-stained slides of HR/HER2 breast cancer patients between January 2013 and December 2014 at Fudan University Shanghai Cancer Center (FUSCC) and scanned to generate whole-slide images (WSIs). Then, we built a deep-learning-based workflow to train and validate model to predict clinicopathological features, multi-omics molecular features and prognosis; the area under the curve (AUC) of the receiver operating characteristic (ROC) and the concordance index (C-index) of the test set were used to assess model effectiveness.
RESULTS
A total of 421 HR/HER2 breast cancer patients were included in our study. Regarding clinicopathological features, grade III could be predicted with an AUC of 0.90 [95% confidence interval (CI): 0.84-0.97]. Regarding somatic mutations, TP53 and GATA3 mutation could be predicted with AUCs of 0.68 (95% CI: 0.56-0.81) and 0.68 (95% CI: 0.47-0.89), respectively. Regarding gene set enrichment analysis (GSEA) pathways, the G2-M checkpoint pathway was predicted with an AUC of 0.79 (95% CI: 0.69-0.90). Regarding markers of immunotherapy response, intratumoral tumor-infiltrating lymphocytes (iTILs), stromal tumor-infiltrating lymphocytes (sTILs), CD8A, and PDCD1 were predicted with AUCs of 0.78 (95% CI: 0.55-1.00), 0.76 (95% CI: 0.65-0.87), 0.71 (95% CI: 0.60-0.82), and 0.74 (95% CI: 0.63-0.85), respectively. In addition, we found that the integration of clinical prognostic variables and deep features of images can improve the stratification of patient prognosis.
CONCLUSIONS
Using a deep-learning-based workflow, we developed models to predict the clinicopathological features, multi-omics features and prognosis of patients with HR/HER2 breast cancer using pathological WSIs. This work may contribute to efficient patient stratification to promote the personalized management of HR/HER2 breast cancer.
背景
乳腺癌在全球女性中发病率和死亡率最高。激素受体(HR)/人表皮生长因子受体2(HER2)乳腺癌是最常见的分子亚型,占乳腺癌的50 - 79%。深度学习已广泛应用于癌症图像分析,尤其用于预测与精准治疗和患者预后相关的靶点。然而,针对HR/HER2乳腺癌治疗靶点和预后预测的研究尚缺。
方法
本研究回顾性收集了2013年1月至2014年12月复旦大学附属肿瘤医院(FUSCC)HR/HER2乳腺癌患者的苏木精-伊红(H&E)染色切片,并扫描生成全切片图像(WSIs)。然后,我们构建了基于深度学习的工作流程来训练和验证模型,以预测临床病理特征、多组学分子特征和预后;采用受试者操作特征曲线(ROC)下面积(AUC)和测试集一致性指数(C-index)评估模型有效性。
结果
本研究共纳入421例HR/HER2乳腺癌患者。关于临床病理特征,III级的预测AUC为0.90[95%置信区间(CI):0.84 - 0.97]。关于体细胞突变,TP53和GATA3突变的预测AUC分别为0.68(95%CI:0.56 - 0.81)和0.68(95%CI:0.47 - 0.8T9)。关于基因集富集分析(GSEA)通路,G2 - M检查点通路的预测AUC为0.79(95%CI:0.69 - 0.90)。关于免疫治疗反应标志物,肿瘤内肿瘤浸润淋巴细胞(iTILs)、基质肿瘤浸润淋巴细胞(sTILs)、CD8A和PDCD1的预测AUC分别为0.78(95%CI:0.55 - 1.00)、0.76(95%CI:0.65 - T87)、0.71(95%CI:0.60 - 0.82)和0.74(95%CI:0.63 - 0.85)。此外,我们发现临床预后变量与图像深度特征的整合可改善患者预后分层。
结论
通过基于深度学习的工作流程,我们开发了利用病理WSIs预测HR/HER2乳腺癌患者临床病理特征、多组学特征和预后的模型。这项工作可能有助于高效的患者分层,以促进HR/HER2乳腺癌的个性化管理。
相似文献
BMC Cancer. 2021-3-6
引用本文的文献
本文引用的文献
Ann Oncol. 2022-1
Nat Med. 2021-5
Future Oncol. 2021-5