Martani Samuele, Zhou Yang, Poli Isabella, Aktas Ece, Meggiolaro Daniele, Jiménez-López Jesús, Wong E Laine, Gregori Luca, Prato Mirko, Di Girolamo Diego, Abate Antonio, De Angelis Filippo, Petrozza Annamaria
Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, 20134 Milano, Italy.
Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80, 80125 Napoli, Italy.
ACS Energy Lett. 2023 May 31;8(6):2801-2808. doi: 10.1021/acsenergylett.3c00610. eCollection 2023 Jun 9.
Bandgap tuning is a crucial characteristic of metal-halide perovskites, with benchmark lead-iodide compounds having a bandgap of 1.6 eV. To increase the bandgap up to 2.0 eV, a straightforward strategy is to partially substitute iodide with bromide in so-called mixed-halide lead perovskites. Such compounds are prone, however, to light-induced halide segregation resulting in bandgap instability, which limits their application in tandem solar cells and a variety of optoelectronic devices. Crystallinity improvement and surface passivation strategies can effectively slow down, but not completely stop, such light-induced instability. Here we identify the defects and the intragap electronic states that trigger the material transformation and bandgap shift. Based on such knowledge, we engineer the perovskite band edge energetics by replacing lead with tin and radically deactivate the photoactivity of such defects. This leads to metal halide perovskites with a photostable bandgap over a wide spectral range and associated solar cells with photostable open circuit voltages.
带隙调谐是金属卤化物钙钛矿的一个关键特性,典型的碘化铅化合物带隙为1.6电子伏特。为了将带隙提高到2.0电子伏特,一个直接的策略是在所谓的混合卤化物铅钙钛矿中用溴化物部分替代碘化物。然而,这类化合物容易发生光致卤化物偏析,导致带隙不稳定,这限制了它们在串联太阳能电池和各种光电器件中的应用。提高结晶度和表面钝化策略可以有效减缓,但不能完全阻止这种光致不稳定性。在这里,我们确定了引发材料转变和带隙移动的缺陷和带隙内电子态。基于这些知识,我们通过用锡取代铅来设计钙钛矿的带边能量,并从根本上消除这些缺陷的光活性。这导致了在宽光谱范围内具有光稳定带隙的金属卤化物钙钛矿以及具有光稳定开路电压的相关太阳能电池。