Min Seonhong, Jeon Minwook, Cho Junsang, Bang Jin Ho, Kamat Prashant V
School of Chemistry and Energy, Sungshin Women's University, Seoul, 01133, Republic of Korea.
Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
Nano Converg. 2024 Nov 30;11(1):49. doi: 10.1186/s40580-024-00459-w.
Lead halide perovskites have emerged as a new class of semiconductor materials with exceptional optoelectronic properties, sparking significant research interest in photovoltaics and light-emitting diodes. However, achieving long-term operational stability remains a critical hurdle. The soft, ionic nature of the halide perovskite lattice renders them vulnerable to various instabilities. These instabilities can be triggered by factors such as photoexcitation, electrical bias, and the surrounding electrolyte/solvent or atmosphere under operating conditions. Spectroelectrochemistry offers a powerful approach to bridge the gap between electrochemistry and photochemistry (or spectroscopy), by providing a comprehensive understanding of the band structure and excited-state dynamics of halide perovskites. This review summarizes recent advances that highlight the fundamental principles, the electronic band structure of halide perovskite materials, and the photoelectrochemical phenomena observed upon photo- and electro-chemical charge injections. Further, we discuss halide instability, encompassing halide oxidation, vacancy formation, ion migration, degradation, and sequential expulsion under electrical bias. Spectroelectrochemical studies that provide a deeper understanding of interfacial processes and halide mobility can pave the way for the design of more robust perovskites, accelerating future research and development efforts.
卤化铅钙钛矿已成为一类具有卓越光电性能的新型半导体材料,引发了光伏和发光二极管领域的重大研究兴趣。然而,实现长期运行稳定性仍然是一个关键障碍。卤化钙钛矿晶格的柔软离子性质使其容易受到各种不稳定性的影响。这些不稳定性可由光激发、电偏压以及运行条件下的周围电解质/溶剂或气氛等因素引发。光谱电化学提供了一种强有力的方法,通过全面了解卤化钙钛矿的能带结构和激发态动力学,弥合电化学与光化学(或光谱学)之间的差距。本综述总结了近期的进展,这些进展突出了基本原理、卤化钙钛矿材料的电子能带结构以及光注入和电注入电荷时观察到的光电化学现象。此外,我们讨论了卤化物不稳定性,包括卤化物氧化、空位形成、离子迁移、降解以及电偏压下的顺序排出。能够更深入理解界面过程和卤化物迁移率的光谱电化学研究可为设计更稳定的钙钛矿铺平道路,加速未来的研发工作。