Ennis Dalton, Golden Dylan, Curtin Mackenzie C, Cooper Alma, Sun Cynthia, Riegner Kathleen, Johnson Caleb C, Nolletti Julia L, Wallace Kingsley B, Chacon Jose A, Bethune Haven, Ritchie Tessy S, Schnee Vincent, DeNeve Daniel R, Riegner Dawn E
Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996 United States.
U.S. Army, Combined Arms Support Command, Fort Lee, Virginia 23801 United States.
ACS Appl Nano Mater. 2023 May 19;6(11):9315-9321. doi: 10.1021/acsanm.3c00370. eCollection 2023 Jun 9.
This research seeks to support reconnaissance efforts against homemade explosives (HMEs) and improvised explosive devices (IEDs), which are leading causes of combat casualties in recent conflicts. The successful deployment of a passive sensor to be developed for first responders and military must take expense, training requirements, and physical burden all into consideration. By harnessing the size-dependent luminescence of quantum dots (QDs) being electrospun into polymer fibers, the authors of this work hope to progress toward the development of lightweight, multivariable, inexpensive, easy to use and interpret, field-applicable sensors capable of detecting explosive vapors. The data demonstrate that poly(methyl methacrylate) (PMMA), polystyrene (PS), and polyvinyl chloride (PVC) fibers doped with Fort Orange cadmium selenide (CdSe) QDs, Birch Yellow CdSe QDs, or carbon (C) QDs will quench in the presence of explosive vapors (DNT, TNT, TATP, and RDX). In all cases, the fluorescent signal of the doped fiber continuously quenched upon sustained exposure to the headspace vapors. The simple method for the integration of QDs into the fibers' structure combined with their straightforward visual response, reusability, and durability all present characteristics desired for a field-operable and multimodal sensor with the ability to detect explosive threats.
本研究旨在支持针对自制爆炸物(HME)和简易爆炸装置(IED)的侦察工作,这些爆炸物是近期冲突中导致战斗人员伤亡的主要原因。为急救人员和军队开发的被动传感器若要成功部署,必须综合考虑成本、培训要求和身体负担。通过利用静电纺丝到聚合物纤维中的量子点(QD)的尺寸依赖性发光特性,本研究的作者希望朝着开发能够检测爆炸物蒸汽的轻质、多变量、廉价、易于使用和解读、适用于现场的传感器迈进。数据表明,掺杂有橙色堡硒化镉(CdSe)量子点、桦木黄CdSe量子点或碳(C)量子点的聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)和聚氯乙烯(PVC)纤维在爆炸物蒸汽(DNT、TNT、TATP和RDX)存在时会发生淬灭。在所有情况下,掺杂纤维的荧光信号在持续暴露于顶空蒸汽时会持续淬灭。将量子点整合到纤维结构中的简单方法,再加上其直观的视觉响应、可重复使用性和耐久性,都具备了现场可操作的多模式传感器检测爆炸威胁所需的特性。