Arcos Sarah, Han Alvin X, Te Velthuis Aartjan J W, Russell Colin A, Lauring Adam S
Department of Microbiology and Immunology, University of Michigan, 1150 West Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109, USA.
Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
Virus Evol. 2023 May 27;9(1):vead037. doi: 10.1093/ve/vead037. eCollection 2023.
The influenza A virus (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the polymerase introduces into viral genome segments during replication are the ultimate source of genetic variation, including within the three subunits of the IAV polymerase (polymerase basic protein 2, polymerase basic protein 1, and polymerase acidic protein). Evolutionary analysis of the IAV polymerase is complicated, because changes in mutation rate, replication speed, and drug resistance involve epistatic interactions among its subunits. In order to study the evolution of the human seasonal H3N2 polymerase since the 1968 pandemic, we identified pairwise evolutionary relationships among ∼7000 H3N2 polymerase sequences using mutual information (MI), which measures the information gained about the identity of one residue when a second residue is known. To account for uneven sampling of viral sequences over time, we developed a weighted MI (wMI) metric and demonstrate that wMI outperforms raw MI through simulations using a well-sampled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dataset. We then constructed wMI networks of the H3N2 polymerase to extend the inherently pairwise wMI statistic to encompass relationships among larger groups of residues. We included hemagglutinin (HA) in the wMI network to distinguish between functional wMI relationships within the polymerase and those potentially due to hitch-hiking on antigenic changes in HA. The wMI networks reveal coevolutionary relationships among residues with roles in replication and encapsidation. Inclusion of HA highlighted polymerase-only subgraphs containing residues with roles in the enzymatic functions of the polymerase and host adaptability. This work provides insight into the factors that drive and constrain the rapid evolution of influenza viruses.
甲型流感病毒(IAV)RNA聚合酶是IAV进化的重要驱动因素。该聚合酶在复制过程中引入病毒基因组片段的突变是遗传变异的最终来源,包括IAV聚合酶的三个亚基(聚合酶碱性蛋白2、聚合酶碱性蛋白1和聚合酶酸性蛋白)内的变异。IAV聚合酶的进化分析很复杂,因为突变率、复制速度和耐药性的变化涉及其亚基之间的上位相互作用。为了研究自1968年大流行以来人类季节性H3N2聚合酶的进化,我们使用互信息(MI)确定了约7000个H3N2聚合酶序列之间的成对进化关系,互信息衡量的是当已知第二个残基时关于一个残基身份所获得的信息。为了解决病毒序列随时间抽样不均的问题,我们开发了一种加权互信息(wMI)指标,并通过使用采样充分的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)数据集进行模拟证明wMI优于原始互信息。然后,我们构建了H3N2聚合酶的wMI网络,以将固有的成对wMI统计扩展到涵盖更大的残基组之间的关系。我们在wMI网络中纳入了血凝素(HA),以区分聚合酶内的功能性wMI关系和那些可能由于搭HA抗原变化便车而产生的关系。wMI网络揭示了在复制和衣壳化中起作用的残基之间的协同进化关系。纳入HA突出了仅包含在聚合酶的酶功能和宿主适应性中起作用的残基的聚合酶子图。这项工作为驱动和限制流感病毒快速进化的因素提供了见解。