Han Yanjiao, Yuan Zhefan, Zhong Sijin Luo, Xu Haoxian, Jiang Shaoyi
Molecular Engineering and Science Institute, University of Washington WA 98195 USA.
Meinig School of Biomedical Engineering, Cornell University Ithaca NY 14853 USA
Chem Sci. 2023 May 19;14(23):6375-6382. doi: 10.1039/d2sc07067g. eCollection 2023 Jun 14.
The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system is a powerful genome-editing tool that is widely used in many different applications. However, the high-frequency mutations induced by RNA-guided Cas9 at sites other than the intended on-target sites are a major concern that impedes therapeutic and clinical applications. A deeper analysis shows that most off-target events result from the non-specific mismatch between single guide RNA (sgRNA) and target DNA. Therefore, minimizing the non-specific RNA-DNA interaction can be an effective solution to this issue. Here we provide two novel methods at the protein and mRNA levels to minimize this mismatch issue by chemically conjugating Cas9 with zwitterionic pCB polymers or genetically fusing Cas9 with zwitterionic (EK) peptides. The zwitterlated or EKylated CRISPR/Cas9 ribonucleoproteins (RNPs) show reduced off-target DNA editing while maintaining a similar level of on-target gene editing activity. Results show that the off-target efficiency of zwitterlated CRISPR/Cas9 is reduced on average by 70% and can be as high as 90% when compared with naive CRISPR/Cas9 editing. These approaches provide a simple and effective way to streamline the development of genome editing with the potential to accelerate a wide array of biological and therapeutic applications based on CRISPR/Cas9 technology.
成簇规律间隔短回文重复序列(CRISPR)相关蛋白9(Cas9)系统是一种强大的基因组编辑工具,广泛应用于许多不同领域。然而,RNA引导的Cas9在预期的靶位点以外的位点诱导的高频突变是一个主要问题,阻碍了其治疗和临床应用。深入分析表明,大多数脱靶事件是由单向导RNA(sgRNA)与靶DNA之间的非特异性错配引起的。因此,最小化非特异性RNA-DNA相互作用可能是解决这一问题的有效方法。在这里,我们在蛋白质和mRNA水平上提供了两种新方法,通过将Cas9与两性离子pCB聚合物化学偶联或使Cas9与两性离子(EK)肽基因融合来最小化这种错配问题。两性离子化或EK化的CRISPR/Cas9核糖核蛋白(RNP)在保持相似水平的靶基因编辑活性的同时,显示出降低的脱靶DNA编辑。结果表明,与未处理的CRISPR/Cas9编辑相比,两性离子化CRISPR/Cas9的脱靶效率平均降低了70%,最高可达90%。这些方法提供了一种简单有效的方式来简化基因组编辑的开发,有可能加速基于CRISPR/Cas9技术的广泛生物和治疗应用。