Chang Xin, Lu Zhenpu, Wang Xianhui, Zhao Zhi-Jian, Gong Jinlong
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University China
Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China.
Chem Sci. 2023 May 18;14(23):6414-6419. doi: 10.1039/d3sc01057k. eCollection 2023 Jun 14.
The activation of the C-H bond in heterogeneous catalysis plays a privileged role in converting light alkanes into commodity chemicals with a higher value. In contrast to traditional trial-and-error approaches, developing predictive descriptors theoretical calculations can accelerate the process of catalyst design. Using density functional theory (DFT) calculations, this work describes tracking C-H bond activation of propane over transition metal catalysts, which is highly dependent on the electronic environment of catalytic sites. Furthermore, we reveal that the occupancy of the antibonding state for metal-adsorbate interaction is the key factor in determining the ability to activate the C-H bond. Among 10 frequently used electronic features, the work function () exhibits a strong negative correlation with C-H activation energies. We demonstrate that e can effectively quantify the ability of C-H bond activation, surpassing the predictive capacity of the d-band center. The C-H activation temperatures of the synthesized catalysts also confirm the effectiveness of this descriptor. Apart from propane, e applies to other reactants like methane.
多相催化中C-H键的活化在将轻质烷烃转化为高价值的日用化学品过程中起着特殊作用。与传统的试错方法不同,通过理论计算开发预测性描述符可以加速催化剂设计过程。利用密度泛函理论(DFT)计算,这项工作描述了丙烷在过渡金属催化剂上C-H键活化的追踪情况,这高度依赖于催化位点的电子环境。此外,我们揭示了金属-吸附质相互作用的反键态占据情况是决定C-H键活化能力的关键因素。在10个常用的电子特征中,功函数()与C-H活化能呈现出很强的负相关性。我们证明,功函数可以有效地量化C-H键的活化能力,超过d带中心的预测能力。合成催化剂的C-H活化温度也证实了该描述符的有效性。除丙烷外,功函数也适用于甲烷等其他反应物。