Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 30072, P. R. China.
Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 30072, P. R. China.
Nat Commun. 2018 Oct 26;9(1):4454. doi: 10.1038/s41467-018-06967-8.
Noble-metal alloys are widely used as heterogeneous catalysts. However, due to the existence of scaling properties of adsorption energies on transition metal surfaces, the enhancement of catalytic activity is frequently accompanied by side reactions leading to a reduction in selectivity for the target product. Herein, we describe an approach to breaking the scaling relationship for propane dehydrogenation, an industrially important reaction, by assembling single atom alloys (SAAs), to achieve simultaneous enhancement of propylene selectivity and propane conversion. We synthesize γ-alumina-supported platinum/copper SAA catalysts by incipient wetness co-impregnation method with a high copper to platinum ratio. Single platinum atoms dispersed on copper nanoparticles dramatically enhance the desorption of surface-bounded propylene and prohibit its further dehydrogenation, resulting in high propylene selectivity (~90%). Unlike previous reported SAA applications at low temperatures (<400 °C), Pt/Cu SAA shows excellent stability of more than 120 h of operation under atmospheric pressure at 520 °C.
贵金属合金被广泛用作多相催化剂。然而,由于吸附能在过渡金属表面上存在标度性质,因此催化活性的增强经常伴随着副反应,从而导致目标产物的选择性降低。在此,我们描述了一种通过组装单原子合金 (SAA) 打破丙烷脱氢这一工业上重要反应的标度关系的方法,从而同时提高丙烯选择性和丙烷转化率。我们通过初始湿浸渍法用高铜/铂比合成了γ-氧化铝负载的铂/铜 SAA 催化剂。分散在铜纳米颗粒上的单铂原子显著增强了表面结合丙烯的脱附,并阻止其进一步脱氢,从而实现了高丙烯选择性(约 90%)。与之前在低温(<400°C)下报道的 SAA 应用不同,Pt/Cu SAA 在 520°C 下在大气压力下操作超过 120 小时表现出优异的稳定性。