Zhou Qimin, Wang Deliang, Wang Qingyue, He Kailin, Lim Khak Ho, Yang Xuan, Wang Wen-Jun, Li Bo-Geng, Liu Pingwei
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, Zhejiang, P. R. China.
Institute of Zhejiang University-Quzhou, 99 Zheda Rd, Quzhou, 324000, Zhejiang, P. R. China.
Angew Chem Int Ed Engl. 2023 Oct 2;62(40):e202305644. doi: 10.1002/anie.202305644. Epub 2023 Jul 11.
Chemical upcycling of polyethylene (PE) can convert plastic waste into valuable resources. However, engineering a catalyst that allows PE decomposition at low temperatures with high activity remains a significant challenge. Herein, we anchored 0.2 wt.% platinum (Pt) on defective two-dimensional tungsten trioxide (2D WO ) nanosheets and achieved hydrocracking of high-density polyethylene (HDPE) waste at 200-250 °C with a liquid fuel (C ) formation rate up to 1456 g ⋅ g ⋅ h . The reaction pathway over the bifunctional 2D Pt/WO is elucidated by quasi-operando transmission infrared spectroscopy, where (I) well-dispersed Pt immobilized on 2D WO nanosheets trigger the dissociation of hydrogen; (II) adsorption of PE and activation of C-C cleavage on WO are through the formation of C=O/C=C intermediates; (III) intermediates are converted to alkane products by the dissociated H. Our study directly illustrates the synergistic role of bifunctional Pt/WO catalyst in the hydrocracking of HDPE, paving the way for the development of high-performance catalysts with optimized chemical and morphological properties.
聚乙烯(PE)的化学升级循环可以将塑料废物转化为有价值的资源。然而,设计一种能在低温下以高活性实现PE分解的催化剂仍然是一项重大挑战。在此,我们将0.2 wt.%的铂(Pt)锚定在有缺陷的二维三氧化钨(2D WO₃)纳米片上,并在200 - 250 °C实现了高密度聚乙烯(HDPE)废料的加氢裂化,液体燃料(C₅)的生成速率高达1456 g₅ ⋅ gPt⁻¹ ⋅ h⁻¹。通过准原位透射红外光谱阐明了双功能2D Pt/WO₃上的反应途径,其中:(I)固定在2D WO₃纳米片上的高度分散Pt引发氢的解离;(II)PE在WO₃上的吸附以及C - C键的活化是通过形成C = O/C = C中间体实现的;(III)中间体通过解离的H转化为烷烃产物。我们的研究直接阐明了双功能Pt/WO₃催化剂在HDPE加氢裂化中的协同作用,为开发具有优化化学和形态性质的高性能催化剂铺平了道路。