Suppr超能文献

通过稀钌铂合金实现聚乙烯氢解以获得与氢压无关的低甲烷选择性。

Polyethylene hydrogenolysis by dilute RuPt alloy to achieve H-pressure-independent low methane selectivity.

作者信息

Hu Qikun, Qian Shuairen, Wang Yuqi, Zhao Jiayang, Jiang Meng, Sun Mingze, Huang Helai, Gan Tao, Ma Jun, Zhang Jing, Cheng Yi, Niu Zhiqiang

机构信息

State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing, China.

Department of Chemical Engineering, Tsinghua University, Beijing, China.

出版信息

Nat Commun. 2024 Dec 4;15(1):10573. doi: 10.1038/s41467-024-54786-x.

Abstract

Chemical recycling of plastic waste could reduce its environmental impact and create a more sustainable society. Hydrogenolysis is a viable method for polyolefin valorization but typically requires high hydrogen pressures to minimize methane production. Here, we circumvent this stringent requirement using dilute RuPt alloy to suppress the undesired terminal C-C scission under hydrogen-lean conditions. Spectroscopic studies reveal that PE adsorption takes place on both Ru and Pt sites, yet the C-C bond cleavage proceeds faster on Ru site, which helps avoid successive terminal scission of the in situ-generated reactive intermediates due to the lack of a neighboring Ru site. Different from previous research, this method of suppressing methane generation is independent of H pressure, and PE can be converted to fuels and waxes/lubricant base oils with only <3.2% methane even under ambient H pressure. This advantage would allow the integration of distributed, low-pressure hydrogen sources into the upstream of PE hydrogenolysis and provide a feasible solution to decentralized plastic upcycling.

摘要

塑料废物的化学回收可以减少其对环境的影响,并创建一个更可持续的社会。氢解是一种可行的聚烯烃增值方法,但通常需要高氢压以尽量减少甲烷生成。在这里,我们使用稀RuPt合金规避了这一严格要求,以在贫氢条件下抑制不希望的末端C-C断裂。光谱研究表明,PE在Ru和Pt位点上均发生吸附,但C-C键在Ru位点上的断裂速度更快,这有助于避免由于缺乏相邻的Ru位点而导致原位生成的反应中间体发生连续的末端断裂。与先前的研究不同,这种抑制甲烷生成的方法与氢压无关,即使在环境氢压下,PE也可以转化为燃料和蜡/润滑油基础油,甲烷含量仅<3.2%。这一优势将允许将分布式低压氢源整合到PE氢解的上游,并为分散式塑料升级回收提供可行的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/001c/11618510/b7a3ba27dbf3/41467_2024_54786_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验