Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, United Kingdom; Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom; Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, United Kingdom.
Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, United Kingdom.
EBioMedicine. 2023 Jul;93:104643. doi: 10.1016/j.ebiom.2023.104643. Epub 2023 Jun 14.
Socioeconomic pressures, sex, and physical health status strongly influence the development of major depressive disorder (MDD) and mask other contributing factors in small cohorts. Resilient individuals overcome adversity without the onset of psychological symptoms, but resilience, as for susceptibility, has a complex and multifaceted molecular basis. The scale and depth of the UK Biobank affords an opportunity to identify resilience biomarkers in rigorously matched, at-risk individuals. Here, we evaluated whether blood metabolites could prospectively classify and indicate a biological basis for susceptibility or resilience to MDD.
Using the UK Biobank, we employed random forests, a supervised, interpretable machine learning statistical method to determine the relative importance of sociodemographic, psychosocial, anthropometric, and physiological factors that govern the risk of prospective MDD onset (total n = 15,710). We then used propensity scores to rigorously match individuals with a history of MDD (n = 491) against a resilient subset of individuals without an MDD diagnosis (retrospectively or during follow-up; n = 491) using an array of key social, demographic, and disease-associated drivers of depression risk. 381 blood metabolites and clinical chemistry variables and 4 urine metabolites were integrated to generate a multivariate random forest-based algorithm using 10-fold cross-validation to predict prospective MDD risk and resilience.
In unmatched individuals, a first case of MDD, with a median time-to-diagnosis of 72 years, can be predicted using random forest classification probabilities with an area under the receiver operator characteristic curve (ROC AUC) of 0.89. Prospective resilience/susceptibility to MDD was then predicted with a ROC AUC of 0.72 (x˜ = 3.2 years follow-up) and 0.68 (x˜ = 7.2 years follow-up). Increased pyruvate was identified as a key biomarker of resilience to MDD and was validated retrospectively in the TwinsUK cohort.
Blood metabolites prospectively associate with substantially reduced MDD risk. Therapeutic targeting of these metabolites may provide a framework for MDD risk stratification and reduction.
New York Academy of Sciences' Interstellar Programme Award; Novo Fonden; Lincoln Kingsgate award; Clarendon Fund; Newton-Abraham studentship (University of Oxford). The funders had no role in the development of the present study.
社会经济压力、性别和身体健康状况强烈影响重度抑郁症(MDD)的发展,并掩盖了小队列中的其他致病因素。具有韧性的个体在没有出现心理症状的情况下克服逆境,但韧性和易感性一样,具有复杂而多方面的分子基础。英国生物库的规模和深度为在严格匹配的高危个体中识别抗抑郁药的生物标志物提供了机会。在这里,我们评估了血液代谢物是否可以前瞻性地对 MDD 的易感性或抗抑郁药进行分类,并指示其生物学基础。
使用英国生物库,我们采用随机森林,一种有监督的、可解释的机器学习统计方法,来确定社会人口统计学、心理社会、人体测量和生理因素的相对重要性,这些因素决定了前瞻性 MDD 发病的风险(总人数 n=15710)。然后,我们使用倾向评分,使用一系列与抑郁风险相关的关键社会、人口统计学和疾病驱动因素,将有 MDD 病史的个体(n=491)与无 MDD 诊断的韧性个体(前瞻性或随访时;n=491)严格匹配。整合了 381 种血液代谢物和临床化学变量以及 4 种尿液代谢物,使用 10 折交叉验证生成基于多元随机森林的算法,以预测前瞻性 MDD 风险和抗抑郁药的韧性。
在未匹配的个体中,中位数诊断时间为 72 年的首次 MDD 病例可以使用随机森林分类概率进行预测,接收器操作特征曲线(ROC AUC)的面积为 0.89。然后使用 ROC AUC 预测前瞻性 MDD 的抗抑郁药和易感性,ROC AUC 为 0.72(x˜=3.2 年随访)和 0.68(x˜=7.2 年随访)。发现丙酮酸增加是 MDD 抗抑郁药的关键生物标志物,并在 TwinsUK 队列中进行了回顾性验证。
血液代谢物与 MDD 风险显著降低有前瞻性关联。这些代谢物的治疗靶向可能为 MDD 风险分层和降低提供框架。
纽约科学院的星际计划奖;诺和基金会;林肯金格斯盖特奖;克拉伦登基金;牛顿-亚伯拉罕奖学金(牛津大学)。资助者在本研究的发展中没有作用。