Suppr超能文献

通过 DNA 编码文库进行小分子发现。

Small-molecule discovery through DNA-encoded libraries.

机构信息

Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

出版信息

Nat Rev Drug Discov. 2023 Sep;22(9):699-722. doi: 10.1038/s41573-023-00713-6. Epub 2023 Jun 16.

Abstract

The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.

摘要

生物活性小分子作为探针或候选药物的开发需要能够获得化学多样性的发现平台,并且能够快速揭示目标的新配体。在过去的 15 年中,DNA 编码文库 (DEL) 技术已经成熟为小分子发现的广泛使用平台,为许多治疗相关靶点产生了各种各样的生物活性配体。与传统筛选方法相比,DEL 具有许多优势,包括筛选效率、易于多重化的靶点和文库选择、最小化评估整个 DEL 和大型文库所需的资源,以及较大的文库规模。本综述提供了最近从 DEL 中发现的小分子的描述,包括它们的初始鉴定、优化和生物特性的验证,包括适合临床应用。

相似文献

1
Small-molecule discovery through DNA-encoded libraries.
Nat Rev Drug Discov. 2023 Sep;22(9):699-722. doi: 10.1038/s41573-023-00713-6. Epub 2023 Jun 16.
2
Chemical Biology Probes from Advanced DNA-encoded Libraries.
ACS Chem Biol. 2016 Feb 19;11(2):296-307. doi: 10.1021/acschembio.5b00981. Epub 2016 Jan 28.
3
Future challenges with DNA-encoded chemical libraries in the drug discovery domain.
Expert Opin Drug Discov. 2019 Aug;14(8):735-753. doi: 10.1080/17460441.2019.1614559. Epub 2019 May 21.
4
Recent Advances on the Selection Methods of DNA-Encoded Libraries.
Chembiochem. 2021 Jul 15;22(14):2384-2397. doi: 10.1002/cbic.202100144. Epub 2021 May 7.
5
Evolution of the Selection Methods of DNA-Encoded Chemical Libraries.
Acc Chem Res. 2021 Sep 7;54(17):3491-3503. doi: 10.1021/acs.accounts.1c00375. Epub 2021 Aug 24.
6
Strategies for developing DNA-encoded libraries beyond binding assays.
Nat Chem. 2022 Feb;14(2):129-140. doi: 10.1038/s41557-021-00877-x. Epub 2022 Feb 4.
8
The Impact of Variable Selection Coverage on Detection of Ligands from a DNA-Encoded Library Screen.
SLAS Discov. 2020 Jun;25(5):515-522. doi: 10.1177/2472555220908240. Epub 2020 Feb 28.
9
Selecting a DNA-Encoded Chemical Library against Non-immobilized Proteins Using a "Ligate-Cross-Link-Purify" Strategy.
Bioconjug Chem. 2017 Sep 20;28(9):2293-2301. doi: 10.1021/acs.bioconjchem.7b00343. Epub 2017 Aug 10.
10
Exploring the Lower Limit of Individual DNA-Encoded Library Molecules in Selection.
SLAS Discov. 2020 Jun;25(5):523-529. doi: 10.1177/2472555219893949. Epub 2019 Dec 20.

引用本文的文献

2
DNA-encoded library screening uncovers potent DNMT2 inhibitors targeting a cryptic allosteric binding site.
iScience. 2025 Aug 5;28(9):113300. doi: 10.1016/j.isci.2025.113300. eCollection 2025 Sep 19.
3
Influence of Macrocyclization Strategies on DNA-Encoded Cyclic Peptide Libraries.
JACS Au. 2025 Jun 27;5(7):3399-3407. doi: 10.1021/jacsau.5c00473. eCollection 2025 Jul 28.
4
Protein-ligand data at scale to support machine learning.
Nat Rev Chem. 2025 Jul 23. doi: 10.1038/s41570-025-00737-z.
5
Targeting protein disorder: the next hurdle in drug discovery.
Nat Rev Drug Discov. 2025 Jun 9. doi: 10.1038/s41573-025-01220-6.
8
MTA-cooperative PRMT5 inhibitors from cofactor-directed DNA-encoded library screens.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2425052122. doi: 10.1073/pnas.2425052122. Epub 2025 May 16.
9
The power of DNA-encoded chemical libraries in the battle against drug-resistant bacteria.
RSC Adv. 2025 Apr 30;15(18):14001-14029. doi: 10.1039/d5ra00016e. eCollection 2025 Apr 28.
10

本文引用的文献

1
DNA-encoded library-enabled discovery of proximity-inducing small molecules.
Nat Chem Biol. 2024 Feb;20(2):170-179. doi: 10.1038/s41589-023-01458-4. Epub 2023 Nov 2.
2
Optimization of PROTAC Ternary Complex Using DNA Encoded Library Approach.
ACS Chem Biol. 2023 Jan 20;18(1):25-33. doi: 10.1021/acschembio.2c00797. Epub 2023 Jan 6.
3
PAC-FragmentDEL - photoactivated covalent capture of DNA-encoded fragments for hit discovery.
RSC Med Chem. 2022 Aug 26;13(11):1341-1349. doi: 10.1039/d2md00197g. eCollection 2022 Nov 16.
4
Triazine-Based Covalent DNA-Encoded Libraries for Discovery of Covalent Inhibitors of Target Proteins.
ACS Med Chem Lett. 2022 Aug 15;13(10):1574-1581. doi: 10.1021/acsmedchemlett.2c00127. eCollection 2022 Oct 13.
5
Discovery and molecular basis of subtype-selective cyclophilin inhibitors.
Nat Chem Biol. 2022 Nov;18(11):1184-1195. doi: 10.1038/s41589-022-01116-1. Epub 2022 Sep 26.
6
Discovery and Structural Characterization of Small Molecule Binders of the Human CTLH E3 Ligase Subunit GID4.
J Med Chem. 2022 Oct 13;65(19):12725-12746. doi: 10.1021/acs.jmedchem.2c00509. Epub 2022 Sep 18.
7
Discovery of TIGIT inhibitors based on DEL and machine learning.
Front Chem. 2022 Jul 26;10:982539. doi: 10.3389/fchem.2022.982539. eCollection 2022.
8
Driving E3 Ligase Substrate Specificity for Targeted Protein Degradation: Lessons from Nature and the Laboratory.
Annu Rev Biochem. 2022 Jun 21;91:295-319. doi: 10.1146/annurev-biochem-032620-104421. Epub 2022 Mar 23.
9
Expanding the DNA-encoded library toolbox: identifying small molecules targeting RNA.
Nucleic Acids Res. 2022 Jul 8;50(12):e67. doi: 10.1093/nar/gkac173.
10
Macrocyclic DNA-encoded chemical libraries: a historical perspective.
RSC Chem Biol. 2021 Oct 29;3(1):7-17. doi: 10.1039/d1cb00161b. eCollection 2022 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验