School of Life Sciences, University of Warwick, Coventry, UK.
Genome Biol. 2023 Jun 16;24(1):138. doi: 10.1186/s13059-023-02977-y.
Despite the recent rise of RNA-seq datasets combining single-cell (sc) resolution with 4-thiouridine (4sU) labelling, analytical methods exploiting their power to dissect transcriptional bursting are lacking. Here, we present a mathematical model and Bayesian inference implementation to facilitate genome-wide joint parameter estimation and confidence quantification (R package: burstMCMC). We demonstrate that, unlike conventional scRNA-seq, 4sU scRNA-seq resolves temporal parameters and furthermore boosts inference of dimensionless parameters via a synergy between single-cell resolution and 4sU labelling. We apply our method to published 4sU scRNA-seq data and linked with ChIP-seq data, we uncover previously obscured associations between different parameters and histone modifications.
尽管最近出现了将单细胞(sc)分辨率与 4-硫代尿嘧啶(4sU)标记相结合的 RNA-seq 数据集,但缺乏利用其力量来剖析转录爆发的分析方法。在这里,我们提出了一个数学模型和贝叶斯推断实现,以促进全基因组联合参数估计和置信度量化(R 包:burstMCMC)。我们证明,与传统的 scRNA-seq 不同,4sU scRNA-seq 可以解析时间参数,并且通过单细胞分辨率和 4sU 标记之间的协同作用,进一步提高了无维参数的推断。我们将我们的方法应用于已发表的 4sU scRNA-seq 数据,并与 ChIP-seq 数据相关联,我们发现了不同参数与组蛋白修饰之间以前被掩盖的关联。