Suppr超能文献

一种用于非小细胞肺癌预后的新型免疫基因组分类。

A novel immunogenomic classification for prognosis in non-small cell lung cancer.

作者信息

Tang Shu, Xu Liqing, Wu Zhanshen, Wen Qiang, Li Hui, Li Na

机构信息

Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1, East Construction Road, Zhengzhou, 450052, China.

Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, 450052, China.

出版信息

J Cancer Res Clin Oncol. 2023 Sep;149(12):10951-10964. doi: 10.1007/s00432-023-04887-9. Epub 2023 Jun 17.

Abstract

OBJECTIVE

To facilitate immunotherapy and prognostic assessment of non-small cell lung cancer (NSCLC), we established a novel immunogenomic classification to provide valid identification criteria.

METHODS

The immune enrichment scores were calculated by single sample gene set enrichment analysis (ssGSEA) and clustered into Immunity_L and Immunity_H, and the reliability of this classification was demonstrated. Immune microenvironment score and immune cell infiltration analysis of NSCLC were also performed. Randomly divided into training group and test group, a prognosis-related immune profile was developed using least absolute shrinkage and selection operator (LASSO) and stepwise COX proportional hazards model to construct a prognostic mode.

RESULTS

The risk score for this immune profile was identified as an independent prognostic factor and can be used as a powerful prognostic tool to refine tumor immunotherapy. Our study identified two NSCLC classifications based on immunomic profiling, Immunity_H and Immunity_L.

CONCLUSION

In conclusion, Immunogenomic classification can distinguish the immune status of different types of NSCLC patients and contribute to the immunotherapy of NSCLC patients.

摘要

目的

为促进非小细胞肺癌(NSCLC)的免疫治疗和预后评估,我们建立了一种新的免疫基因组分类方法以提供有效的识别标准。

方法

通过单样本基因集富集分析(ssGSEA)计算免疫富集分数,并将其聚类为免疫低分组(Immunity_L)和免疫高分组(Immunity_H),并验证了该分类的可靠性。还对NSCLC进行了免疫微环境评分和免疫细胞浸润分析。随机分为训练组和测试组,使用最小绝对收缩和选择算子(LASSO)和逐步COX比例风险模型建立与预后相关的免疫特征,以构建预后模型。

结果

该免疫特征的风险评分被确定为独立的预后因素,可作为优化肿瘤免疫治疗的有力预后工具。我们的研究基于免疫组学分析确定了两种NSCLC分类,即免疫高分组(Immunity_H)和免疫低分组(Immunity_L)。

结论

总之,免疫基因组分类可以区分不同类型NSCLC患者的免疫状态,并有助于NSCLC患者的免疫治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验