Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
J Phys Chem A. 2023 Jun 29;127(25):5360-5373. doi: 10.1021/acs.jpca.3c02582. Epub 2023 Jun 18.
Chemical substituents can influence photodynamics by altering the location of critical points and the topography of the potential energy surfaces (electronic effect) and by selectively modifying the inertia of specific nuclear modes (inertial effects). Using nonadiabatic dynamics simulations, we investigate the impact of methylation on S() internal conversion in acrolein, the simplest linear α,β-unsaturated carbonyl. Consistent with time constants reported in a previous time-resolved photoelectron spectroscopy study, S → S deactivation occurs on an ultrafast time scale (∼50 fs). However, our simulations do not corroborate the sequential decay model used to fit the experiment. Instead, upon reaching the S state, the wavepacket bifurcates: a portion undergoes ballistic S → S deactivation (∼90 fs) mediated by fast bond-length alternation motion, while the remaining decays on the picosecond time scale. Our analysis reveals that methyl substitution, generally assumed to mainly exert inertial influence, is also manifested in important electronic effects due to its weak electron-donating ability. While methylation at the β C atom gives rise to effects principally of an inertial nature, such as retarding the twisting motion of the terminal -CHCH group and increasing its coupling with pyramidalization, methylation at the α or carbonyl C atom modifies the potential energy surfaces in a way that also contributes to altering the late S-decay behavior. Specifically, our results suggest that the observed slowing of the picosecond component upon α-methylation is a consequence of a tighter surface and reduced amplitude along the central pyramidalization, effectively restricting the access to the S/S-intersection seam. Our work offers new insight into the S() internal conversion mechanisms in acrolein and its methylated derivatives and highlights site-selective methylation as a tuning knob to manipulate photochemical reactions.
化学取代基可以通过改变临界点的位置和势能表面的形貌(电子效应)以及有选择地修饰特定核模式的惯性(惯性效应)来影响光动力。我们使用非绝热动力学模拟研究了甲基化对丙烯醛中 S()内部转换的影响,丙烯醛是最简单的线性α,β-不饱和羰基。与之前的时间分辨光电子能谱研究中报道的时间常数一致,S → S 失活发生在超快时间尺度(∼50 fs)。然而,我们的模拟并不能证实用于拟合实验的顺序衰减模型。相反,在到达 S 态后,波包分叉:一部分经历弹道 S → S 失活(∼90 fs),由快速键长交替运动介导,而其余部分则在皮秒时间尺度上衰变。我们的分析表明,甲基取代通常被认为主要施加惯性影响,但由于其较弱的供电子能力,也表现出重要的电子效应。虽然β C 原子上的甲基取代主要产生惯性性质的影响,例如延迟末端 -CHCH 基团的扭曲运动并增加其与三角化的耦合,但α 或羰基 C 原子上的甲基取代以改变后期 S 衰变行为的方式改变了势能表面。具体而言,我们的结果表明,α-甲基化导致皮秒分量的观察到的变慢是由于表面更紧且沿着中心三角化的幅度减小,有效地限制了对 S/S-交叉缝的访问。我们的工作为丙烯醛及其甲基化衍生物中 S()内部转换机制提供了新的见解,并强调了位点选择性甲基化作为操纵光化学反应的调谐旋钮。