Sarkar Rudraditya, Loos Pierre-François, Boggio-Pasqua Martial, Jacquemin Denis
Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France.
J Chem Theory Comput. 2022 Apr 12;18(4):2418-2436. doi: 10.1021/acs.jctc.1c01197. Epub 2022 Mar 25.
Methods able to simultaneously account for both static and dynamic electron correlations have often been employed, not only to model photochemical events but also to provide reference values for vertical transition energies, hence allowing benchmarking of lower-order models. In this category, both the complete-active-space second-order perturbation theory (CASPT2) and the -electron valence state second-order perturbation theory (NEVPT2) are certainly popular, the latter presenting the advantage of not requiring the application of the empirical ionization-potential-electron-affinity (IPEA) and level shifts. However, the actual accuracy of these multiconfigurational approaches is not settled yet. In this context, to assess the performances of these approaches, the present work relies on highly accurate (±0.03 eV) aug-cc-pVTZ vertical transition energies for 284 excited states of diverse character (174 singlet, 110 triplet, 206 valence, 78 Rydberg, 78 n → π*, 119 π → π*, and 9 double excitations) determined in 35 small- to medium-sized organic molecules containing from three to six non-hydrogen atoms. The CASPT2 calculations are performed with and without IPEA shift and compared to the partially contracted (PC) and strongly contracted (SC) variants of NEVPT2. We find that both CASPT2 with IPEA shift and PC-NEVPT2 provide fairly reliable vertical transition energy estimates, with slight overestimations and mean absolute errors of 0.11 and 0.13 eV, respectively. These values are found to be rather uniform for the various subgroups of transitions. The present work completes our previous benchmarks focused on single-reference wave function methods ( 2018, 14, 4360; 2020, 16, 1711), hence allowing for a fair comparison between various families of electronic structure methods. In particular, we show that ADC(2), CCSD, and CASPT2 deliver similar accuracies for excited states with a dominant single-excitation character.
能够同时考虑静态和动态电子关联的方法经常被采用,不仅用于模拟光化学事件,还用于提供垂直跃迁能量的参考值,从而为低阶模型提供基准测试。在这一类方法中,完全活性空间二阶微扰理论(CASPT2)和 - 电子价态二阶微扰理论(NEVPT2)无疑都很受欢迎,后者的优点是不需要应用经验电离势 - 电子亲和势(IPEA)和能级移动。然而,这些多组态方法的实际准确性尚未确定。在此背景下,为了评估这些方法的性能,本研究依赖于对35个含有三到六个非氢原子的中小尺寸有机分子中284个不同性质激发态(174个单重态、110个三重态、206个价态、78个里德堡态、78个n → π*、119个π → π*和9个双激发态)的高精度(±0.03 eV)aug-cc-pVTZ垂直跃迁能量。CASPT2计算在有和没有IPEA移动的情况下进行,并与NEVPT2的部分收缩(PC)和强收缩(SC)变体进行比较。我们发现,带有IPEA移动的CASPT2和PC-NEVPT2都能提供相当可靠的垂直跃迁能量估计值,分别有轻微的高估,平均绝对误差为0.11和0.13 eV。这些值在不同跃迁子组中相当一致。本研究完善了我们之前专注于单参考波函数方法的基准测试(2018年,14卷,4360页;2020年,16卷,1711页),从而能够对不同电子结构方法家族进行公平比较。特别是,我们表明,对于具有主导单激发特征的激发态,ADC(2)、CCSD和CASPT2具有相似的精度。