Suppr超能文献

利用复制周期反应创建和修饰感染性克隆的体外工作流程。

An in vitro workflow to create and modify infectious clones using replication cycle reaction.

机构信息

Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States.

Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States.

出版信息

Virology. 2023 Aug;585:109-116. doi: 10.1016/j.virol.2023.05.013. Epub 2023 Jun 13.

Abstract

Reverse genetics systems are critical tools in combating emerging viruses which enable a better understanding of the genetic mechanisms by which viruses cause disease. Traditional cloning approaches using bacteria are fraught with difficulties due to the bacterial toxicity of many viral sequences, resulting in unwanted mutations within the viral genome. Here, we describe a novel in vitro workflow that leverages gene synthesis and replication cycle reaction to produce a supercoiled infectious clone plasmid that is easy to distribute and manipulate. We developed two infectious clones as proof of concept: a low passage dengue virus serotype 2 isolate (PUO-218) and the USA-WA1/2020 strain of SARS-CoV-2, which replicated similarly to their respective parental viruses. Furthermore, we generated a medically relevant mutant of SARS-CoV-2, Spike D614G. Results indicate that our workflow is a viable method to generate and manipulate infectious clones for viruses that are notoriously difficult for traditional bacterial-based cloning methods.

摘要

反向遗传学系统是对抗新兴病毒的关键工具,可帮助更好地理解病毒引起疾病的遗传机制。由于许多病毒序列对细菌具有毒性,传统的细菌克隆方法存在诸多困难,导致病毒基因组内产生非预期的突变。在这里,我们描述了一种新颖的体外工作流程,该流程利用基因合成和复制循环反应来产生易于分发和操作的超螺旋感染性克隆质粒。我们开发了两个感染性克隆作为概念验证:低传代登革热病毒血清型 2 分离株(PUO-218)和 SARS-CoV-2 的美国 WA1/2020 株,它们的复制与各自的亲本病毒相似。此外,我们还生成了一种与医学相关的 SARS-CoV-2 突变株,Spike D614G。结果表明,我们的工作流程是一种可行的方法,可以生成和操作对于传统基于细菌的克隆方法来说极具挑战性的病毒的感染性克隆。

相似文献

1
An in vitro workflow to create and modify infectious clones using replication cycle reaction.
Virology. 2023 Aug;585:109-116. doi: 10.1016/j.virol.2023.05.013. Epub 2023 Jun 13.
4
Bacterial Artificial Chromosome Reverse Genetics Approaches for SARS-CoV-2.
Methods Mol Biol. 2024;2733:133-153. doi: 10.1007/978-1-0716-3533-9_9.
6
Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction.
Cell Rep. 2021 Apr 20;35(3):109014. doi: 10.1016/j.celrep.2021.109014. Epub 2021 Apr 1.
7
Rescue of SARS-CoV-2 from a Single Bacterial Artificial Chromosome.
mBio. 2020 Sep 25;11(5):e02168-20. doi: 10.1128/mBio.02168-20.
9
Cloning of a Passage-Free SARS-CoV-2 Genome and Mutagenesis Using Red Recombination.
Int J Mol Sci. 2021 Sep 22;22(19):10188. doi: 10.3390/ijms221910188.
10
Reverse Genetics Approaches for Chikungunya Virus.
Methods Mol Biol. 2016;1426:283-95. doi: 10.1007/978-1-4939-3618-2_26.

引用本文的文献

1
Reverse genetics rescue of sylvatic dengue viruses.
J Virol. 2025 Jul 22;99(7):e0045025. doi: 10.1128/jvi.00450-25. Epub 2025 Jun 4.
3
Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness.
Front Cell Infect Microbiol. 2023 Mar 9;13:1130749. doi: 10.3389/fcimb.2023.1130749. eCollection 2023.

本文引用的文献

1
Enhanced attenuation of chikungunya vaccines expressing antiviral cytokines.
NPJ Vaccines. 2024 Mar 12;9(1):59. doi: 10.1038/s41541-024-00843-x.
2
Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness.
Front Cell Infect Microbiol. 2023 Mar 9;13:1130749. doi: 10.3389/fcimb.2023.1130749. eCollection 2023.
4
Generation and characterization of genetically and antigenically diverse infectious clones of dengue virus serotypes 1-4.
Emerg Microbes Infect. 2022 Dec;11(1):227-239. doi: 10.1080/22221751.2021.2021808.
5
Infection Kinetics and Transmissibility of a Reanimated Dengue Virus Serotype 4 Identified Originally in Wild From Florida.
Front Microbiol. 2021 Sep 24;12:734903. doi: 10.3389/fmicb.2021.734903. eCollection 2021.
6
D614G mutation in the SARS-CoV-2 spike protein enhances viral fitness by desensitizing it to temperature-dependent denaturation.
J Biol Chem. 2021 Oct;297(4):101238. doi: 10.1016/j.jbc.2021.101238. Epub 2021 Sep 24.
7
amplification of whole large plasmids via transposon-mediated insertion.
Biotechniques. 2021 Oct;71(4):528-533. doi: 10.2144/btn-2021-0068. Epub 2021 Aug 31.
8
A selective sweep in the Spike gene has driven SARS-CoV-2 human adaptation.
Cell. 2021 Aug 19;184(17):4392-4400.e4. doi: 10.1016/j.cell.2021.07.007. Epub 2021 Jul 7.
9
A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses.
Nat Commun. 2021 Jun 8;12(1):3431. doi: 10.1038/s41467-021-23779-5.
10
Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction.
Cell Rep. 2021 Apr 20;35(3):109014. doi: 10.1016/j.celrep.2021.109014. Epub 2021 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验