Suppr超能文献

人工智能在皮肤淋巴瘤数字病理学中的应用:现状与未来展望的综述。

Artificial intelligence in digital pathology of cutaneous lymphomas: A review of the current state and future perspectives.

机构信息

Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.

Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands.

出版信息

Semin Cancer Biol. 2023 Sep;94:81-88. doi: 10.1016/j.semcancer.2023.06.004. Epub 2023 Jun 17.

Abstract

Primary cutaneous lymphomas (CLs) represent a heterogeneous group of T-cell lymphomas and B-cell lymphomas that present in the skin without evidence of extracutaneous involvement at time of diagnosis. CLs are largely distinct from their systemic counterparts in clinical presentation, histopathology, and biological behavior and, therefore, require different therapeutic management. Additional diagnostic burden is added by the fact that several benign inflammatory dermatoses mimic CL subtypes, requiring clinicopathological correlation for definitive diagnosis. Due to the heterogeneity and rarity of CL, adjunct diagnostic tools are welcomed, especially by pathologists without expertise in this field or with limited access to a centralized specialist panel. The transition into digital pathology workflows enables artificial intelligence (AI)-based analysis of patients' whole-slide pathology images (WSIs). AI can be used to automate manual processes in histopathology but, more importantly, can be applied to complex diagnostic tasks, especially suitable for rare disease like CL. To date, AI-based applications for CL have been minimally explored in literature. However, in other skin cancers and systemic lymphomas, disciplines that are recognized here as the building blocks for CLs, several studies demonstrated promising results using AI for disease diagnosis and subclassification, cancer detection, specimen triaging, and outcome prediction. Additionally, AI allows discovery of novel biomarkers or may help to quantify established biomarkers. This review summarizes and blends applications of AI in pathology of skin cancer and lymphoma and proposes how these findings can be applied to diagnostics of CL.

摘要

原发性皮肤淋巴瘤 (CL) 是一组异质性的 T 细胞淋巴瘤和 B 细胞淋巴瘤,其在皮肤中出现,在诊断时没有证据表明有皮肤外受累。CL 在临床表现、组织病理学和生物学行为上与它们的系统性对应物有很大的不同,因此需要不同的治疗管理。由于一些良性炎症性皮肤病模拟 CL 亚型,需要临床病理相关性来明确诊断,这增加了额外的诊断负担。由于 CL 的异质性和罕见性,辅助诊断工具受到欢迎,特别是对于没有该领域专业知识或无法获得集中专家小组的病理学家。进入数字病理学工作流程使得基于人工智能 (AI) 的患者全切片病理图像 (WSI) 分析成为可能。AI 可用于自动化组织病理学中的手动流程,但更重要的是,可应用于复杂的诊断任务,尤其是对于 CL 等罕见疾病。迄今为止,文献中对基于 AI 的 CL 应用的研究很少。然而,在其他皮肤癌和系统性淋巴瘤中,作为 CL 的基石,在这些领域的几项研究中,使用 AI 进行疾病诊断和分类、癌症检测、标本分类和预后预测方面取得了有前景的结果。此外,AI 允许发现新的生物标志物,或有助于量化已建立的生物标志物。这篇综述总结了 AI 在皮肤癌和淋巴瘤病理学中的应用,并提出了如何将这些发现应用于 CL 的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验