NanoBio High-Tech Materials Research Center, Department of Biological Science and Bioengineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea.
Chemosphere. 2023 Sep;336:139256. doi: 10.1016/j.chemosphere.2023.139256. Epub 2023 Jun 16.
Global demand for lithium (Li) resources has dramatically increased due to the demand for clean energy, especially the large-scale usage of lithium-ion batteries in electric vehicles. Membrane capacitive deionization (MCDI) is an energy and cost-efficient electrochemical technology at the forefront of Li extraction from natural resources such as brine and seawater. In this study, we designed high-performance MCDI electrodes by compositing Li intercalation redox-active Prussian blue (PB) nanoparticles with highly conductive porous activated carbon (AC) matrix for the selective extraction of Li. Herein, we prepared a series of PB-anchored AC composites (AC/PB) containing different percentages (20%, 40%, 60%, and 80%) of PB by weight (AC/PB-20%, AC/PB-40%, AC/PB-60%, and AC/PB-80%, respectively). The AC/PB-20% electrode with uniformly anchored PB nanoparticles over AC matrix enhanced the number of active sites for electrochemical reaction, promoted electron/ion transport paths, and facilitated abundant channels for the reversible insertion/de-insertion of Li by PB, which resulted in stronger current response, higher specific capacitance (159 F g), and reduced interfacial resistance for the transport of Li and electrons. An asymmetric MCDI cell assembled with AC/PB-20% as cathode and AC as anode (AC//AC-PB20%) displayed outstanding Li electrosorption capacity of 24.42 mg g and a mean salt removal rate of 2.71 mg g min in 5 mM LiCl aqueous solution at 1.4 V with high cyclic stability. After 50 electrosorption-desorption cycles, 95.11% of the initial electrosorption capacity was retained, reflecting its good electrochemical stability. The described strategy demonstrates the potential benefits of compositing intercalation pseudo capacitive redox material with Faradaic materials for the design of advanced MCDI electrodes for real-life Li extraction applications.
由于对清洁能源的需求,特别是电动汽车对锂离子电池的大规模使用,全球对锂(Li)资源的需求急剧增加。膜电容去离子(MCDI)是一种从盐水和海水等自然资源中提取 Li 的前沿、节能且具有成本效益的电化学技术。在这项研究中,我们通过将嵌入 Li 的氧化还原活性普鲁士蓝(PB)纳米粒子与高导电性多孔活性炭(AC)基质复合,设计了用于选择性提取 Li 的高性能 MCDI 电极。在此,我们通过重量(AC/PB-20%、AC/PB-40%、AC/PB-60%和 AC/PB-80%)制备了一系列含有不同百分比(20%、40%、60%和 80%)PB 的 PB 锚定 AC 复合材料(AC/PB-20%、AC/PB-40%、AC/PB-60%和 AC/PB-80%)。具有均匀锚定在 AC 基质上的 PB 纳米粒子的 AC/PB-20% 电极增加了电化学反应的活性位点数量,促进了电子/离子输运路径,并通过 PB 为 Li 的可逆插入/脱插提供了丰富的通道,从而产生了更强的电流响应、更高的比电容(159 F g)和更低的界面电阻,有利于 Li 和电子的传输。由 AC/PB-20% 作为阴极和 AC 作为阳极组装的不对称 MCDI 电池(AC//AC-PB20%)在 1.4 V 下以 5 mM LiCl 水溶液显示出出色的 Li 电吸附容量 24.42 mg g和平均盐去除率 2.71 mg g min,具有高循环稳定性。在 50 次电吸附-解吸循环后,初始电吸附容量保留了 95.11%,表明其具有良好的电化学稳定性。所描述的策略证明了将嵌入赝电容氧化还原材料与法拉第材料复合用于设计用于实际 Li 提取应用的先进 MCDI 电极的潜在好处。