Suppr超能文献

采用不同的矩阵分解方法识别脑卒中幸存者的肌肉协同作用。

Using different matrix factorization approaches to identify muscle synergy in stroke survivors.

机构信息

Robotics Institute, Ningbo University of Technology, Ningbo 315211, China.

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo,315201, China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China.

出版信息

Med Eng Phys. 2023 Jul;117:103993. doi: 10.1016/j.medengphy.2023.103993. Epub 2023 May 13.

Abstract

Over the past several decades, many scholars have investigated muscle synergy as a promising tool for evaluating motor function. However, it is challenging to obtain favorable robustness using the general muscle synergy identification algorithms, namely non-negative matrix factorization (NMF), independent component analysis (ICA), and factor analysis (FA). Some scholars have proposed improved muscle synergy identification algorithms to overcome the shortcomings of these approaches, such as singular value decomposition NMF (SVD-NMF), sparse NMF (S-NMF), and multivariate curve resolution-alternating least squares (MCR-ALS). However, performance comparisons of these algorithms are seldom conducted. In this study, experimental electromyography (EMG) data collected from healthy individuals and stroke survivors were applied to assess the repeatability and intra-subject consistency of NMF, SVD-NMF, S-NMF, ICA, FA, and MCR-ALS. MCR-ALS presented higher repeatability and intra-subject consistencies than the other algorithms. More synergies and lower intra-subject consistencies were observed in stroke survivors than in healthy individuals. Thus, MCR-ALS is considered a favorable muscle synergy identification algorithm for patients with neural system disorders.

摘要

在过去几十年中,许多学者已经研究了肌肉协同作用,将其作为评估运动功能的一种有前途的工具。然而,使用一般的肌肉协同作用识别算法(即非负矩阵分解(NMF)、独立成分分析(ICA)和因子分析(FA))很难获得良好的鲁棒性。一些学者已经提出了改进的肌肉协同作用识别算法,以克服这些方法的缺点,例如奇异值分解 NMF(SVD-NMF)、稀疏 NMF(S-NMF)和多元曲线分辨-交替最小二乘法(MCR-ALS)。然而,这些算法的性能比较很少进行。在这项研究中,应用来自健康个体和中风幸存者的实验肌电图(EMG)数据来评估 NMF、SVD-NMF、S-NMF、ICA、FA 和 MCR-ALS 的可重复性和个体内一致性。MCR-ALS 比其他算法具有更高的可重复性和个体内一致性。与健康个体相比,中风幸存者观察到更多的协同作用和更低的个体内一致性。因此,MCR-ALS 被认为是一种用于神经紊乱患者的有利的肌肉协同作用识别算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验