Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Deparment of Neurology, Fondazione Policlinico Tor Vergata, Rome, Italy.
Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A.Corti 12, Milan, Italy.
Comput Methods Programs Biomed. 2024 Jun;251:108217. doi: 10.1016/j.cmpb.2024.108217. Epub 2024 May 7.
A new direction in the study of motor control was opened about two decades ago with the introduction of a model for the generation of motor commands as combination of muscle synergies. Muscle synergies provide a simple yet quantitative framework for analyzing the hierarchical and modular architecture of the human motor system. However, to gain insights on the functional role of muscle synergies, they should be related to the task space. The recently introduced mixed-matrix factorization (MMF) algorithm extends the standard approach for synergy extraction based on non-negative matrix factorization (NMF) allowing to factorize data constituted by a mixture of non-negative variables (e.g. EMGs) and unconstrained variables (e.g. kinematics, naturally including both positive and negative values). The kinematic-muscular synergies identified by MMF provide a direct link between muscle synergies and the task space. In this contribution, we support the adoption of MMF through a Matlab toolbox for the extraction of kinematic-muscular synergies and a set of practical guidelines to allow biomedical researchers and clinicians to exploit the potential of this novel approach.
MMF is implemented in the SynergyAnalyzer toolbox using an object-oriented approach. In addition to the MMF algorithm, the toolbox includes standard methods for synergy extraction (NMF and PCA), as well as methods for pre-processing EMG and kinematic data, and for plotting data and synergies.
As an example of MMF application, kinematic-muscular synergies were extracted from EMG and kinematic data collected during reaching movements towards 8 targets on the sagittal plane. Instructions and command lines to achieve such results are illustrated in detail. The toolbox has been released as an open-source software on GitHub under the GNU General Public License.
Thanks to its ease of use and adaptability to a variety of datasets, SynergyAnalyzer will facilitate the adoption of MMF to extract kinematic-muscular synergies from mixed EMG and kinematic data, a useful approach in biomedical research to better understand and characterize the functional role of muscle synergies.
大约二十年前,随着肌肉协同作用模型的引入,运动控制的研究出现了一个新方向,该模型将运动指令的产生视为肌肉协同作用的组合。肌肉协同作用提供了一个简单而定量的框架,用于分析人类运动系统的层次结构和模块化结构。然而,为了深入了解肌肉协同作用的功能作用,它们应该与任务空间相关。最近引入的混合矩阵分解(MMF)算法扩展了基于非负矩阵分解(NMF)的协同作用提取标准方法,允许对由非负变量(例如肌电图)和无约束变量(例如运动学,自然包括正和负的值)组成的数据进行分解。通过 MMF 识别的运动学-肌肉协同作用为肌肉协同作用和任务空间之间提供了直接联系。在本研究中,我们通过用于提取运动学-肌肉协同作用的 Matlab 工具箱和一套实用指南来支持 MMF 的采用,为生物医学研究人员和临床医生提供了利用这种新方法的潜力。
MMF 通过使用面向对象的方法在 SynergyAnalyzer 工具箱中实现。除了 MMF 算法外,该工具箱还包括用于提取协同作用的标准方法(NMF 和 PCA),以及用于预处理肌电图和运动学数据以及绘制数据和协同作用的方法。
作为 MMF 应用的一个示例,从矢状面上 8 个目标的伸展运动中收集的肌电图和运动学数据中提取了运动学-肌肉协同作用。详细说明了实现这些结果的说明和命令行。该工具箱已在 GitHub 上以 GNU 通用公共许可证的形式作为开源软件发布。
由于其易于使用和适应各种数据集的能力,SynergyAnalyzer 将促进从混合肌电图和运动学数据中提取运动学-肌肉协同作用的 MMF 的采用,这是生物医学研究中更好地理解和描述肌肉协同作用的功能作用的有用方法。