Suppr超能文献

正常组织毒性预测:临床转化的前景。

Normal Tissue Toxicity Prediction: Clinical Translation on the Horizon.

机构信息

Department of Radiation Oncology, the Medical College of Wisconsin, Milwaukee, WI.

Department of Radiation Oncology, the Medical College of Wisconsin, Milwaukee, WI.

出版信息

Semin Radiat Oncol. 2023 Jul;33(3):307-316. doi: 10.1016/j.semradonc.2023.03.010.

Abstract

Improvements in radiotherapy delivery have enabled higher therapeutic doses and improved efficacy, contributing to the growing number of long-term cancer survivors. These survivors are at risk of developing late toxicity from radiotherapy, and the inability to predict who is most susceptible results in substantial impact on quality of life and limits further curative dose escalation. A predictive assay or algorithm for normal tissue radiosensitivity would allow more personalized treatment planning, reducing the burden of late toxicity, and improving the therapeutic index. Progress over the last 10 years has shown that the etiology of late clinical radiotoxicity is multifactorial and informs development of predictive models that combine information on treatment (eg, dose, adjuvant treatment), demographic and health behaviors (eg, smoking, age), co-morbidities (eg, diabetes, collagen vascular disease), and biology (eg, genetics, ex vivo functional assays). AI has emerged as a useful tool and is facilitating extraction of signal from large datasets and development of high-level multivariable models. Some models are progressing to evaluation in clinical trials, and we anticipate adoption of these into the clinical workflow in the coming years. Information on predicted risk of toxicity could prompt modification of radiotherapy delivery (eg, use of protons, altered dose and/or fractionation, reduced volume) or, in rare instances of very high predicted risk, avoidance of radiotherapy. Risk information can also be used to assist treatment decision-making for cancers where efficacy of radiotherapy is equivalent to other treatments (eg, low-risk prostate cancer) and can be used to guide follow-up screening in instances where radiotherapy is still the best choice to maximize tumor control probability. Here, we review promising predictive assays for clinical radiotoxicity and highlight studies that are progressing to develop an evidence base for clinical utility.

摘要

放疗技术的改进使更高的治疗剂量和更好的疗效成为可能,这也导致了长期癌症幸存者人数的增加。这些幸存者有发生放疗晚期毒性的风险,而且无法预测哪些人更容易受到影响,这对他们的生活质量产生了重大影响,并限制了进一步提高治愈剂量。正常组织放射敏感性的预测检测或算法将允许更个性化的治疗计划,减少晚期毒性的负担,并提高治疗指数。过去 10 年的进展表明,晚期临床放射毒性的病因是多因素的,并为预测模型的开发提供了信息,这些模型结合了治疗信息(例如剂量、辅助治疗)、人口统计学和健康行为(例如吸烟、年龄)、合并症(例如糖尿病、胶原血管疾病)和生物学信息(例如遗传学、体外功能检测)。人工智能已成为一种有用的工具,它有助于从大型数据集提取信号,并开发高级多变量模型。一些模型正在临床试验中进行评估,我们预计这些模型将在未来几年内被应用于临床工作流程。毒性预测风险的信息可以提示修改放疗的实施(例如,使用质子治疗、改变剂量和/或分割、减少照射体积),或者在预测风险非常高的极少数情况下,避免放疗。风险信息还可以用于辅助那些放疗疗效与其他治疗方法相当的癌症的治疗决策(例如低危前列腺癌),并可用于指导在仍需最大限度提高肿瘤控制概率的情况下选择放疗的情况下进行后续筛查。在这里,我们回顾了有前景的临床放射毒性预测检测,并强调了正在为临床实用性建立证据基础的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验