Zhao Sheng, Hu Feng, Yin Lijie, Li Linlin, Peng Shengjie
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Sci Bull (Beijing). 2023 Jul 15;68(13):1389-1398. doi: 10.1016/j.scib.2023.06.001. Epub 2023 Jun 2.
Electronic structure manipulation with regard to active site coordination is an effective strategy to improve the electrocatalytic oxygen evolution reaction (OER) activity. Herein, we present the structure-activity relationship between oxygen-atom-mediated electron rearrangement and active site coordination asymmetry. Ni ions are introduced to FeWO on Ni foam (NF) via self-substitution to break the symmetry of the FeO octahedron and regulate d-electron structure of Fe sites. Structural regulation optimizes the adsorption energy of hydroxyl on the Fe sites and promotes the partial formation of hydroxyl oxide with high OER activity on the tungstate surface. FeNiWO/NF with the asymmetric FeO octahedron of Fe sites can achieve an ultralow overpotential of 170 mV at 10 mA cm and 240 mV at 1000 mA cm with robust stability for 500 h at high current density under alkaline conditions. This research develops novel electrocatalysts with impressive OER performance and provides new insights into the design of highly active catalytic systems.
关于活性位点配位的电子结构调控是提高电催化析氧反应(OER)活性的有效策略。在此,我们展示了氧原子介导的电子重排与活性位点配位不对称性之间的构效关系。通过自取代将镍离子引入泡沫镍(NF)上的FeWO中,以打破FeO八面体的对称性并调节Fe位点的d电子结构。结构调控优化了羟基在Fe位点上的吸附能,并促进了在钨酸盐表面形成具有高OER活性的羟基氧化物。具有不对称Fe位点的FeNiWO/NF在碱性条件下,在10 mA cm时可实现170 mV的超低过电位,在1000 mA cm时为240 mV,并在高电流密度下具有500 h的稳健稳定性。本研究开发了具有令人印象深刻的OER性能的新型电催化剂,并为高活性催化体系的设计提供了新的见解。