He Xun, Yao Yongchao, Zhang Min, Zhou Yilei, Zhang Limei, Ren Yuchun, Dong Kai, Tang Hong, Nan Jue, Zhou Xingli, Luo Han, Ying Binwu, Yu Qi, Luo Fengming, Tang Bo, Sun Xuping
Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
Nat Commun. 2025 Jul 1;16(1):5541. doi: 10.1038/s41467-025-60620-9.
Seawater electrolysis driven by offshore renewable energy is a promising avenue for large-scale hydrogen production but faces challenges in designing robust anodes that suppress surface chlorine reactions and corrosion at high current densities. Here we report a strategy by selectively docking PW-polyoxometalate (PW-POM) onto Fe sites of CoFe hydroxide anode to modulate the electronic structure of adjacent Co active centers and regulate Cl⁻/OH⁻ adsorption for efficient alkaline seawater oxidation. Our CoFe-based anode achieves low overpotentials, high catalytic selectivity, and notable durability, with continuous operation at 1 A cm⁻² for over 1300 hours and at 2 A cm⁻² more than 600 hours. Theoretical calculations and ex situ/in situ analyses reveal that PW-POM coordination at Fe sites stabilizes Fe, suppresses its leaching, modulates Co acidity, promotes OH⁻ adsorption, and protects metal sites from Cl⁻ corrosion.
由海上可再生能源驱动的海水电解是大规模制氢的一个有前景的途径,但在设计能够抑制高电流密度下表面氯反应和腐蚀的耐用阳极方面面临挑战。在此,我们报告一种策略,即通过将PW-多金属氧酸盐(PW-POM)选择性地对接在氢氧化钴铁阳极的铁位点上,以调节相邻钴活性中心的电子结构,并调节Cl⁻/OH⁻吸附,从而实现高效的碱性海水氧化。我们基于钴铁的阳极实现了低过电位、高催化选择性和显著的耐久性,在1 A cm⁻²下连续运行超过1300小时,在2 A cm⁻²下连续运行超过600小时。理论计算和非原位/原位分析表明,铁位点上的PW-POM配位稳定了铁,抑制了其浸出,调节了钴的酸度,促进了OH⁻吸附,并保护金属位点免受Cl⁻腐蚀。