Suppr超能文献

溶剂和A位阳离子控制溴基钙钛矿薄膜中的择优晶体取向。

Solvent and A-Site Cation Control Preferred Crystallographic Orientation in Bromine-Based Perovskite Thin Films.

作者信息

Hidalgo Juanita, An Yu, Yehorova Dariia, Li Ruipeng, Breternitz Joachim, Perini Carlo A R, Hoell Armin, Boix Pablo P, Schorr Susan, Kretchmer Joshua S, Correa-Baena Juan-Pablo

机构信息

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

出版信息

Chem Mater. 2023 May 25;35(11):4181-4191. doi: 10.1021/acs.chemmater.3c00075. eCollection 2023 Jun 13.

Abstract

Preferred crystallographic orientation in polycrystalline films is desirable for efficient charge carrier transport in metal halide perovskites and semiconductors. However, the mechanisms that determine the preferred orientation of halide perovskites are still not well understood. In this work, we investigate crystallographic orientation in lead bromide perovskites. We show that the solvent of the precursor solution and organic A-site cation strongly affect the preferred orientation of the deposited perovskite thin films. Specifically, we show that the solvent, dimethylsulfoxide, influences the early stages of crystallization and induces preferred orientation in the deposited films by preventing colloidal particle interactions. Additionally, the methylammonium A-site cation induces a higher degree of preferred orientation than the formamidinium counterpart. We use density functional theory to show that the lower surface energy of the (100) plane facets in methylammonium-based perovskites, compared to the (110) planes, is the reason for the higher degree of preferred orientation. In contrast, the surface energy of the (100) and (110) facets is similar for formamidinium-based perovskites, leading to lower degree of preferred orientation. Furthermore, we show that different A-site cations do not significantly affect ion diffusion in bromine-based perovskite solar cells but impact ion density and accumulation, leading to increased hysteresis. Our work highlights the interplay between the solvent and organic A-site cation which determine crystallographic orientation and plays a critical role in the electronic properties and ionic migration of solar cells.

摘要

对于金属卤化物钙钛矿和半导体中高效的电荷载流子传输而言,多晶薄膜中择优的晶体取向是十分理想的。然而,决定卤化物钙钛矿择优取向的机制仍未得到充分理解。在这项工作中,我们研究了溴化铅钙钛矿中的晶体取向。我们发现前驱体溶液的溶剂和有机A位阳离子强烈影响沉积的钙钛矿薄膜的择优取向。具体而言,我们表明溶剂二甲基亚砜影响结晶的早期阶段,并通过防止胶体颗粒相互作用在沉积薄膜中诱导择优取向。此外,甲基铵A位阳离子比甲脒阳离子诱导出更高程度的择优取向。我们使用密度泛函理论表明,与(110)平面相比,甲基铵基钙钛矿中(100)平面小面的较低表面能是择优取向程度更高的原因。相比之下,甲脒基钙钛矿中(100)和(110)小面的表面能相似,导致择优取向程度较低。此外,我们表明不同的A位阳离子对基于溴的钙钛矿太阳能电池中的离子扩散没有显著影响,但会影响离子密度和积累,导致滞后现象增加。我们的工作突出了溶剂和有机A位阳离子之间的相互作用,它们决定了晶体取向,并在太阳能电池的电子特性和离子迁移中起着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b06/10269330/8bfa9bec0546/cm3c00075_0002.jpg

相似文献

1
Solvent and A-Site Cation Control Preferred Crystallographic Orientation in Bromine-Based Perovskite Thin Films.
Chem Mater. 2023 May 25;35(11):4181-4191. doi: 10.1021/acs.chemmater.3c00075. eCollection 2023 Jun 13.
2
A Thermodynamically Favored Crystal Orientation in Mixed Formamidinium/Methylammonium Perovskite for Efficient Solar Cells.
Adv Mater. 2019 Jun;31(24):e1900390. doi: 10.1002/adma.201900390. Epub 2019 Apr 22.
3
Impact of Crystallographic Orientation Disorders on Electronic Heterogeneities in Metal Halide Perovskite Thin Films.
Nano Lett. 2018 Oct 10;18(10):6271-6278. doi: 10.1021/acs.nanolett.8b02417. Epub 2018 Sep 18.
4
Thermal Stability and Cation Composition of Hybrid Organic-Inorganic Perovskites.
ACS Appl Mater Interfaces. 2021 Apr 7;13(13):15292-15304. doi: 10.1021/acsami.1c01547. Epub 2021 Mar 25.
5
Correlating Hysteresis and Stability with Organic Cation Composition in the Two-Step Solution-Processed Perovskite Solar Cells.
ACS Appl Mater Interfaces. 2020 Mar 4;12(9):10588-10596. doi: 10.1021/acsami.9b23374. Epub 2020 Feb 24.
6
Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade.
Nat Commun. 2018 Jul 18;9(1):2793. doi: 10.1038/s41467-018-05076-w.
7
Manipulating Crystallographic Orientation via Cross-Linkable Ligand for Efficient and Stable Perovskite Solar Cells.
Small. 2023 May;19(19):e2207189. doi: 10.1002/smll.202207189. Epub 2023 Feb 9.
8
Bromine Incorporation and Suppressed Cation Rotation in Mixed-Halide Perovskites.
ACS Nano. 2020 Nov 24;14(11):15107-15118. doi: 10.1021/acsnano.0c05179. Epub 2020 Oct 26.
9
Recent progress of crystal orientation engineering in halide perovskite photovoltaics.
Mater Horiz. 2023 Jan 3;10(1):13-40. doi: 10.1039/d2mh00980c.
10
Making and Breaking of Lead Halide Perovskites.
Acc Chem Res. 2016 Feb 16;49(2):330-8. doi: 10.1021/acs.accounts.5b00455. Epub 2016 Jan 20.

引用本文的文献

1
Local halide heterogeneity drives surface wrinkling in mixed-halide wide-bandgap perovskites.
Nat Commun. 2025 Feb 25;16(1):1967. doi: 10.1038/s41467-025-57010-6.
2
Narrow Bandgap Metal Halide Perovskites for All-Perovskite Tandem Photovoltaics.
Chem Rev. 2024 Apr 10;124(7):4079-4123. doi: 10.1021/acs.chemrev.3c00667. Epub 2024 Mar 25.

本文引用的文献

1
Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation.
Phys Chem Chem Phys. 2022 Jul 6;24(26):15657-15671. doi: 10.1039/d2cp01338j.
3
Electrode Spacing as a Determinant of the Output Performance of Planar-Type Photodetectors Based on Methylammonium Lead Bromide Perovskite Single Crystals.
ACS Appl Mater Interfaces. 2022 May 4;14(17):20159-20167. doi: 10.1021/acsami.1c24362. Epub 2022 Apr 19.
4
Surface Defect Formation and Passivation in Formamidinium Lead Triiodide (FAPbI) Perovskite Solar Cell Absorbers.
J Phys Chem Lett. 2022 Jan 13;13(1):324-330. doi: 10.1021/acs.jpclett.1c03645. Epub 2022 Jan 3.
5
Solubility of Hybrid Halide Perovskites in DMF and DMSO.
Molecules. 2021 Dec 13;26(24):7541. doi: 10.3390/molecules26247541.
6
Solvent Engineering as a Vehicle for High Quality Thin Films of Perovskites and Their Device Fabrication.
Small. 2021 Jun;17(25):e2008145. doi: 10.1002/smll.202008145. Epub 2021 May 14.
7
Grain Size Influences Activation Energy and Migration Pathways in MAPbBr Perovskite Solar Cells.
J Phys Chem Lett. 2021 Mar 11;12(9):2423-2428. doi: 10.1021/acs.jpclett.1c00205. Epub 2021 Mar 4.
8
Texture Formation in Polycrystalline Thin Films of All-Inorganic Lead Halide Perovskite.
Adv Mater. 2021 Apr;33(13):e2007224. doi: 10.1002/adma.202007224. Epub 2021 Feb 26.
9
Surface Energy-Driven Preferential Grain Growth of Metal Halide Perovskites: Effects of Nanoimprint Lithography Beyond Direct Patterning.
ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5368-5378. doi: 10.1021/acsami.0c17655. Epub 2021 Jan 21.
10
High-Efficiency Perovskite Solar Cells with Imidazolium-Based Ionic Liquid for Surface Passivation and Charge Transport.
Angew Chem Int Ed Engl. 2021 Feb 19;60(8):4238-4244. doi: 10.1002/anie.202010987. Epub 2020 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验