Riquelme Antonio J, Valadez-Villalobos Karen, Boix Pablo P, Oskam Gerko, Mora-Seró Iván, Anta Juan A
Área de Química Física, Universidad Pablo de Olavide, E-41013, Seville, Spain.
Institut de Ciència Molecular, Universidad de València, C/J. Beltran 2, Paterna, Spain.
Phys Chem Chem Phys. 2022 Jul 6;24(26):15657-15671. doi: 10.1039/d2cp01338j.
Perovskite solar cells (PSCs) have reached impressively high efficiencies in a short period of time; however, the optoelectronic properties of halide perovskites are surprisingly complex owing to the coupled ionic-electronic charge carrier dynamics. Electrical impedance spectroscopy (EIS) is a widely used characterization tool to elucidate the mechanisms and kinetics governing the performance of PSCs, as well as of many other semiconductor devices. In general, equivalent circuits are used to evaluate EIS results. Oftentimes these are justified empirical constructions and the real physical meaning of the elements remains disputed. In this perspective, we use drift-diffusion numerical simulations of typical thin-film, planar PSCs to generate impedance spectra avoiding intrinsic experimental difficulties such as instability and low reproducibility. The ionic and electronic properties of the device, such as ion vacancy density, diffusion coefficients, recombination mechanism, , can be changed individually in the simulations, so their effects can be directly observed. We evaluate the resulting EIS spectra by comparing two commonly used equivalent circuits with series and parallel connections respectively, which result in two signals with significantly different time constants. Both circuits can fit the EIS spectra and by extracting the values of the elements of one of the circuits, the values of the elements of the other circuit can be unequivocally obtained. Consequently, both can be used to analyse the EIS of a PSC. However, the physical meaning of each element in each circuit could differ. EIS can produce a broad range of physical information. We analyse the physical interpretation of the elements of each circuit and how to correlate the elements of one circuit with the elements of the other in order to have a direct picture of the physical processes occurring in the device.
钙钛矿太阳能电池(PSCs)在短时间内就达到了令人瞩目的高效率;然而,由于离子 - 电子电荷载流子动力学的耦合,卤化物钙钛矿的光电特性异常复杂。电化学阻抗谱(EIS)是一种广泛使用的表征工具,用于阐明控制PSCs以及许多其他半导体器件性能的机制和动力学。一般来说,等效电路用于评估EIS结果。这些等效电路通常是合理的经验结构,其元件的实际物理意义仍存在争议。从这个角度出发,我们使用典型的薄膜平面PSCs的漂移 - 扩散数值模拟来生成阻抗谱,避免诸如不稳定性和低重现性等内在实验困难。在模拟中,可以单独改变器件的离子和电子特性,如离子空位密度、扩散系数、复合机制等,因此可以直接观察到它们的影响。我们分别通过比较两个常用的串联和并联等效电路来评估所得的EIS谱,这两个电路会产生具有显著不同时间常数的两个信号。两个电路都可以拟合EIS谱,通过提取其中一个电路元件的值,可以明确获得另一个电路元件的值。因此,两者都可用于分析PSC的EIS。然而,每个电路中每个元件的物理意义可能不同。EIS可以产生广泛的物理信息。我们分析了每个电路元件的物理解释,以及如何将一个电路的元件与另一个电路的元件相关联,以便直接了解器件中发生的物理过程。