Wyrick David G, Cain Nicholas, Larsen Rylan S, Lecoq Jérôme, Valley Matthew, Ahmed Ruweida, Bowlus Jessica, Boyer Gabriella, Caldejon Shiella, Casal Linzy, Chvilicek Maggie, DePartee Maxwell, Groblewski Peter A, Huang Cindy, Johnson Katelyn, Kato India, Larkin Josh, Lee Eric, Liang Elizabeth, Luviano Jennifer, Mace Kyla, Nayan Chelsea, Nguyen Thuyanhn, Reding Melissa, Seid Sam, Sevigny Joshua, Stoecklin Michelle, Williford Ali, Choi Hannah, Garrett Marina, Mazzucato Luca
Department of Biology and Institute of Neuroscience, University of Oregon.
Allen Institute, Mindscope program, University of Oregon.
bioRxiv. 2023 Jun 5:2023.06.02.543483. doi: 10.1101/2023.06.02.543483.
The classic view that neural populations in sensory cortices preferentially encode responses to incoming stimuli has been strongly challenged by recent experimental studies. Despite the fact that a large fraction of variance of visual responses in rodents can be attributed to behavioral state and movements, trial-history, and salience, the effects of contextual modulations and expectations on sensory-evoked responses in visual and association areas remain elusive. Here, we present a comprehensive experimental and theoretical study showing that hierarchically connected visual and association areas differentially encode the temporal context and expectation of naturalistic visual stimuli, consistent with the theory of hierarchical predictive coding. We measured neural responses to expected and unexpected sequences of natural scenes in the primary visual cortex (V1), the posterior medial higher order visual area (PM), and retrosplenial cortex (RSP) using 2-photon imaging in behaving mice collected through the Allen Institute Mindscope's OpenScope program. We found that information about image identity in neural population activity depended on the temporal context of transitions preceding each scene, and decreased along the hierarchy. Furthermore, our analyses revealed that the conjunctive encoding of temporal context and image identity was modulated by expectations of sequential events. In V1 and PM, we found enhanced and specific responses to unexpected oddball images, signaling stimulus-specific expectation violation. In contrast, in RSP the population response to oddball presentation recapitulated the missing expected image rather than the oddball image. These differential responses along the hierarchy are consistent with classic theories of hierarchical predictive coding whereby higher areas encode predictions and lower areas encode deviations from expectation. We further found evidence for drift in visual responses on the timescale of minutes. Although activity drift was present in all areas, population responses in V1 and PM, but not in RSP, maintained stable encoding of visual information and representational geometry. Instead we found that RSP drift was independent of stimulus information, suggesting a role in generating an internal model of the environment in the temporal domain. Overall, our results establish temporal context and expectation as substantial encoding dimensions in the visual cortex subject to fast representational drift and suggest that hierarchically connected areas instantiate a predictive coding mechanism.
感觉皮层中的神经群体优先编码对传入刺激的反应这一经典观点,受到了近期实验研究的强烈挑战。尽管啮齿动物视觉反应的很大一部分方差可归因于行为状态和运动、试验历史以及显著性,但情境调制和期望对视觉及联合区域感觉诱发反应的影响仍不明确。在此,我们展示了一项全面的实验和理论研究,表明分层连接的视觉和联合区域以不同方式编码自然视觉刺激的时间背景和期望,这与分层预测编码理论一致。我们使用双光子成像技术,在通过艾伦脑科学研究所Mindscope的OpenScope项目收集行为小鼠数据时,测量了初级视觉皮层(V1)、后内侧高阶视觉区域(PM)和 retrosplenial 皮层(RSP)对预期和意外自然场景序列的神经反应。我们发现,神经群体活动中关于图像身份的信息取决于每个场景之前转换的时间背景,并沿层级递减。此外,我们的分析表明,时间背景和图像身份的联合编码受序列事件期望的调制。在V1和PM中,我们发现对意外的奇异球图像有增强的特异性反应,表明特定刺激期望被违反。相比之下,在RSP中,对奇异球呈现的群体反应重现了缺失的预期图像而非奇异球图像。沿层级的这些差异反应与分层预测编码的经典理论一致,即较高区域编码预测,较低区域编码与期望的偏差。我们还进一步发现了视觉反应在分钟时间尺度上漂移的证据。尽管所有区域都存在活动漂移,但V1和PM中的群体反应,而非RSP中的群体反应,维持了视觉信息和表征几何的稳定编码。相反,我们发现RSP漂移与刺激信息无关,这表明其在生成时间域内环境的内部模型中发挥作用。总体而言,我们的结果将时间背景和期望确立为视觉皮层中受快速表征漂移影响的重要编码维度,并表明分层连接区域实例化了一种预测编码机制。