Hope James, Beckerle Travis, Cheng Pin-Hao, Viavattine Zoey, Feldkamp Michael, Fausner Skylar, Saxena Kapil, Ko Eunsong, Hryb Ihor, Carter Russell, Ebner Timothy, Kodandaramaiah Suhasa
Department of Mechanical Engineering, University of Minnesota, Twin Cities.
Department of Neuroscience, University of Minnesota, Twin Cities.
bioRxiv. 2023 Jun 6:2023.06.04.543578. doi: 10.1101/2023.06.04.543578.
Complex behaviors are mediated by neural computations occurring throughout the brain. In recent years, tremendous progress has been made in developing technologies that can record neural activity at cellular resolution at multiple spatial and temporal scales. However, these technologies are primarily designed for studying the mammalian brain during head fixation - wherein the behavior of the animal is highly constrained. Miniaturized devices for studying neural activity in freely behaving animals are largely confined to recording from small brain regions owing to performance limitations. We present a cranial exoskeleton that assists mice in maneuvering neural recording headstages that are orders of magnitude larger and heavier than the mice, while they navigate physical behavioral environments. Force sensors embedded within the headstage are used to detect the mouse's milli-Newton scale cranial forces which then control the x, y, and yaw motion of the exoskeleton via an admittance controller. We discovered optimal controller tuning parameters that enable mice to locomote at physiologically realistic velocities and accelerations while maintaining natural walking gait. Mice maneuvering headstages weighing up to 1.5 kg can make turns, navigate 2D arenas, and perform a navigational decision-making task with the same performance as when freely behaving. We designed an imaging headstage and an electrophysiology headstage for the cranial exoskeleton to record brain-wide neural activity in mice navigating 2D arenas. The imaging headstage enabled recordings of Ca activity of 1000s of neurons distributed across the dorsal cortex. The electrophysiology headstage supported independent control of up to 4 silicon probes, enabling simultaneous recordings from 100s of neurons across multiple brain regions and multiple days. Cranial exoskeletons provide flexible platforms for largescale neural recording during the exploration of physical spaces, a critical new paradigm for unraveling the brain-wide neural mechanisms that control complex behavior.
复杂行为由全脑发生的神经计算介导。近年来,在开发能够在多个空间和时间尺度上以细胞分辨率记录神经活动的技术方面取得了巨大进展。然而,这些技术主要是为在头部固定期间研究哺乳动物大脑而设计的——在此期间动物的行为受到高度限制。由于性能限制,用于研究自由活动动物神经活动的小型化设备在很大程度上局限于从小脑区域进行记录。我们展示了一种颅骨外骨骼,它能帮助小鼠操控比其大几个数量级且更重的神经记录头戴装置,同时小鼠在物理行为环境中导航。嵌入头戴装置内的力传感器用于检测小鼠以毫牛顿为单位的颅骨力,然后通过导纳控制器控制外骨骼的x、y和偏航运动。我们发现了最佳的控制器调整参数,使小鼠能够以生理上现实的速度和加速度移动,同时保持自然的行走步态。操控重达1.5千克头戴装置的小鼠能够转弯、在二维场地中导航,并执行导航决策任务,其表现与自由活动时相同。我们为颅骨外骨骼设计了成像头戴装置和电生理头戴装置,以记录在二维场地中导航的小鼠全脑范围的神经活动。成像头戴装置能够记录分布在背侧皮质的数千个神经元的钙活性。电生理头戴装置支持对多达4个硅探针的独立控制,能够在多个脑区同时记录数百个神经元的活动,且可连续记录多天。颅骨外骨骼为在物理空间探索过程中进行大规模神经记录提供了灵活的平台,这是揭示控制复杂行为的全脑神经机制的一个关键新范式。