Suppr超能文献

通过散射介质实现高增益和高速波前整形。

High-gain and high-speed wavefront shaping through scattering media.

作者信息

Cheng Zhongtao, Li Chengmingyue, Khadria Anjul, Zhang Yide, Wang Lihong V

机构信息

Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Nat Photonics. 2023 Apr;17(4):299-305. doi: 10.1038/s41566-022-01142-4. Epub 2023 Jan 23.

Abstract

Wavefront shaping (WFS) is emerging as a promising tool for controlling and focusing light in complex scattering media. The shaping system's speed, the energy gain of the corrected wavefronts, and the control degrees of freedom (DOF) are the most important metrics for WFS, especially for highly scattering and dynamic samples. Despite recent advances, current methods suffer from trade-offs that limit satisfactory performance to only one or two of these metrics. Here, we report a WFS technique that simultaneously achieves high speed, high energy gain, and high control DOF. By combining photorefractive crystal-based analog optical phase conjugation (AOPC) and stimulated emission light amplification, our technique achieves an energy gain approaching unity, more than three orders of magnitude larger than conventional AOPC. The response time of ~10 s with about 10 control modes corresponds to an average mode time of about 0.01 ns/mode, which is more than 50 times lower than some of the fastest WFS systems to date. We anticipate that this technique will be instrumental in overcoming the optical diffusion limit in photonics and translate WFS techniques to real-world applications.

摘要

波前整形(WFS)正在成为一种用于在复杂散射介质中控制和聚焦光的有前途的工具。整形系统的速度、校正波前的能量增益以及控制自由度(DOF)是WFS最重要的指标,特别是对于高散射和动态样本。尽管最近取得了进展,但目前的方法存在权衡,只能将令人满意的性能限制在这些指标中的一两个上。在这里,我们报告了一种同时实现高速、高能量增益和高控制自由度的WFS技术。通过结合基于光折变晶体的模拟光学相位共轭(AOPC)和受激发射光放大,我们的技术实现了接近单位的能量增益,比传统AOPC大三个数量级以上。约10 s的响应时间和约10个控制模式对应于约0.01 ns/模式的平均模式时间,这比一些迄今为止最快的WFS系统低50倍以上。我们预计这项技术将有助于克服光子学中的光学扩散极限,并将WFS技术转化为实际应用。

相似文献

1
High-gain and high-speed wavefront shaping through scattering media.
Nat Photonics. 2023 Apr;17(4):299-305. doi: 10.1038/s41566-022-01142-4. Epub 2023 Jan 23.
2
Performance enhancement in wavefront shaping of multiply scattered light: a review.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11512. doi: 10.1117/1.JBO.29.S1.S11512. Epub 2023 Dec 20.
3
Wavefront shaping improves the transparency of the scattering media: a review.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11507. doi: 10.1117/1.JBO.29.S1.S11507. Epub 2023 Dec 9.
4
High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media.
Opt Lett. 2021 Mar 1;46(5):1165-1168. doi: 10.1364/OL.412572.
6
Dual-polarization analog optical phase conjugation for focusing light through scattering media.
Appl Phys Lett. 2019 Jun 10;114(23):231104. doi: 10.1063/1.5097181. Epub 2019 Jun 13.
7
Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation.
Optica. 2017 Feb;4(2):280-288. doi: 10.1364/OPTICA.4.000280. Epub 2017 Feb 20.
8
Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation.
Optica. 2015 Oct;2(10):869-876. doi: 10.1364/OPTICA.2.000869. Epub 2015 Oct 5.
9
Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields.
Innovation (Camb). 2022 Aug 2;3(5):100292. doi: 10.1016/j.xinn.2022.100292. eCollection 2022 Sep 13.

引用本文的文献

1
Optical focusing into scattering media via iterative time reversal guided by absorption nonlinearity.
Nat Commun. 2025 Aug 21;16(1):7807. doi: 10.1038/s41467-025-63095-w.
2
High-fidelity and high-speed wavefront shaping by leveraging complex media.
Sci Adv. 2024 Jul 5;10(27):eadn2846. doi: 10.1126/sciadv.adn2846. Epub 2024 Jul 3.
3
All-optical phase conjugation using diffractive wavefront processing.
Nat Commun. 2024 Jun 11;15(1):4989. doi: 10.1038/s41467-024-49304-y.
4
Introducing the Special Issue Honoring Lihong V. Wang, Pioneer in Biomedical Optics.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11500. doi: 10.1117/1.JBO.29.S1.S11500. Epub 2024 Jun 6.
5
Non-Invasive Self-Adaptive Information States' Acquisition inside Dynamic Scattering Spaces.
Research (Wash D C). 2024 May 31;7:0375. doi: 10.34133/research.0375. eCollection 2024.
6
Single-mode regenerative amplification in multimode fiber.
Optica. 2023 Nov 20;10(11):1417-1420. doi: 10.1364/optica.501955. Epub 2023 Oct 26.
7
Performance enhancement in wavefront shaping of multiply scattered light: a review.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11512. doi: 10.1117/1.JBO.29.S1.S11512. Epub 2023 Dec 20.
8
Wavefront shaping improves the transparency of the scattering media: a review.
J Biomed Opt. 2024 Jan;29(Suppl 1):S11507. doi: 10.1117/1.JBO.29.S1.S11507. Epub 2023 Dec 9.

本文引用的文献

1
Focusing light into scattering media with ultrasound-induced field perturbation.
Light Sci Appl. 2021 Aug 2;10(1):159. doi: 10.1038/s41377-021-00605-7.
2
Memory effect assisted imaging through multimode optical fibres.
Nat Commun. 2021 Jun 18;12(1):3751. doi: 10.1038/s41467-021-23729-1.
4
6
Dual-polarization analog optical phase conjugation for focusing light through scattering media.
Appl Phys Lett. 2019 Jun 10;114(23):231104. doi: 10.1063/1.5097181. Epub 2019 Jun 13.
7
Wavefront shaping with disorder-engineered metasurfaces.
Nat Photonics. 2018;12:84-90. doi: 10.1038/s41566-017-0078-z. Epub 2018 Jan 15.
8
Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light.
Sci Adv. 2017 Dec 8;3(12):eaao5520. doi: 10.1126/sciadv.aao5520. eCollection 2017 Dec.
9
Focusing light through dynamical samples using fast continuous wavefront optimization.
Opt Lett. 2017 Dec 1;42(23):4994-4997. doi: 10.1364/OL.42.004994.
10
Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation.
Optica. 2017 Feb;4(2):280-288. doi: 10.1364/OPTICA.4.000280. Epub 2017 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验