Suppr超能文献

通过氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(FDG-PET/CT)对肺癌进行胸部分期:人工智能对相关肺结节检测的影响

Thoracic staging of lung cancers by FDG-PET/CT: impact of artificial intelligence on the detection of associated pulmonary nodules.

作者信息

Trabelsi Mariem, Romdhane Hamida, Ben-Sellem Dorra

机构信息

University of Tunis El Manar, Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies, 1006, Tunis, Tunisia.

University of Tunis El Manar, Laboratory of Biophysics and Medical Technologies (Higher Institute of Medical Technologies of Tunis), Faculty of Medicine of Tunis, Department of Nuclear Medicine, Salah Azaiez Institute, Tunis, Tunisia.

出版信息

Phys Eng Sci Med. 2025 Jun 30. doi: 10.1007/s13246-025-01567-5.

Abstract

This study focuses on automating the classification of certain thoracic lung cancer stages in 3D FDG-PET/CT images according to the 9th Edition of the TNM Classification for Lung Cancer (2024). By leveraging advanced segmentation and classification techniques, we aim to enhance the accuracy of distinguishing between T4 (pulmonary nodules) Thoracic M0 and M1a (pulmonary nodules) stages. Precise segmentation of pulmonary lobes using the Pulmonary Toolkit enables the identification of tumor locations and additional malignant nodules, ensuring reliable differentiation between ipsilateral and contralateral spread. A modified ResNet-50 model is employed to classify the segmented regions. The performance evaluation shows that the model achieves high accuracy. The unchanged class has the best recall 93% and an excellent F1 score 91%. The M1a (pulmonary nodules) class performs well with an F1 score of 94%, though recall is slightly lower 91%. For T4 (pulmonary nodules) Thoracic M0, the model shows balanced performance with an F1 score of 87%. The overall accuracy is 87%, indicating a robust classification model.

摘要

本研究聚焦于根据《肺癌TNM分类(第9版)》(2024年)对3D FDG-PET/CT图像中的某些胸段肺癌分期进行自动化分类。通过利用先进的分割和分类技术,我们旨在提高区分T4(肺结节)胸段M0和M1a(肺结节)分期的准确性。使用肺部工具包对肺叶进行精确分割,能够识别肿瘤位置和其他恶性结节,确保同侧和对侧扩散之间的可靠区分。采用改进的ResNet-50模型对分割区域进行分类。性能评估表明该模型具有较高的准确性。未改变的类别具有最佳召回率93%和出色的F1分数91%。M1a(肺结节)类的F1分数为94%,表现良好,不过召回率略低,为91%。对于T4(肺结节)胸段M0,该模型的F1分数为87%,表现较为均衡。总体准确率为87%,表明这是一个强大的分类模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验