Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, Martinsried, 82152, Germany.
FEBS Lett. 2023 Jul;597(13):1679-1680. doi: 10.1002/1873-3468.14678. Epub 2023 Jun 19.
Photosynthesis uses the energy of sunlight to convert water and atmospheric CO into sugars, providing food and oxygen for life. The fixation of atmospheric CO in this crucial biological process is mediated by the enzyme Rubisco. The inefficiencies of Rubisco have inspired researchers for decades to explore ways to improve its function with the goal of increasing crop yields [1-4], and more recently to combat global warming [5]. In this graphical review we highlight the challenges involved in engineering plant Rubisco, with a focus on the extensive chaperone requirement for its biogenesis. We discuss strategies for engineering the catalytic properties of Rubisco and for sequestering the enzyme in membraneless compartments to increase CO fixation.
光合作用利用阳光的能量将水和大气中的 CO 转化为糖,为生命提供食物和氧气。在这个关键的生物过程中,大气 CO 的固定是由酶 Rubisco 介导的。Rubisco 的低效性激发了研究人员几十年来探索提高其功能的方法,以提高作物产量[1-4],最近更是为了应对全球变暖[5]。在这篇图文综述中,我们重点介绍了植物 Rubisco 工程改造所面临的挑战,以及其生物发生所需要的广泛分子伴侣的需求。我们讨论了工程改造 Rubisco 的催化特性和将酶隔离在无膜隔室中以增加 CO 固定的策略。