Suppr超能文献

小脑兰尼碱受体 1 缺陷和内质网钙“泄漏”在震颤病理生理学中的作用。

Defective cerebellar ryanodine receptor type 1 and endoplasmic reticulum calcium 'leak' in tremor pathophysiology.

机构信息

Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA.

Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.

出版信息

Acta Neuropathol. 2023 Aug;146(2):301-318. doi: 10.1007/s00401-023-02602-z. Epub 2023 Jun 19.

Abstract

Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca leak via RyR1 may contribute to tremor pathophysiology.

摘要

特发性震颤(ET)是一种常见的神经系统疾病,其特征为 8-10 Hz 的动作性震颤。ET 的分子机制仍知之甚少。临床数据表明小脑在疾病病理生理学中的重要性,而病理学研究表明浦肯野细胞(PCs)受损。我们最近的小脑皮层和 PC 特异性转录组研究确定了钙(Ca)信号通路的改变,包括 ET 中的肌质网ryanodine 受体 1(RyR1)。RyR1 是一种位于内质网(ER)上的细胞内 Ca 释放通道,在小脑主要表达于 PCs。在应激条件下,RyR1 经历多种翻译后修饰(蛋白激酶 A [PKA]磷酸化、氧化、亚硝基化),同时与通道稳定结合伴侣钙结合蛋白 1(calstabin1)耗竭相结合,共同构成“漏通道”生化特征。在这项研究中,我们发现 ET 死后小脑 RyR1-S2844 位点 PKA 磷酸化显著增加、RyR1 氧化和亚硝基化增加,以及 RyR1 复合物中 calstabin1 耗竭。calstabin1-RyR1 结合亲和力的降低与 ET 中 PCs 和 climbing fiber-PC 突触的丧失相关。在对照或帕金森病小脑中未观察到这种“漏”RyR1 特征。死后小脑的微粒体显示 ET 中 ER Ca 泄漏过度,而对照则稳定。我们进一步使用携带 RyR1 点突变的小鼠模型研究 RyR1 在震颤中的作用,该突变模拟了组成型特异性 PKA 磷酸化(RyR1-S2844D)。RyR1-S2844D 纯合子小鼠发展为 10 Hz 动作性震颤,并在小脑生理记录中表现出强烈的异常振荡活性。RyR1 激动剂或拮抗剂的小脑内微注射分别增加或减少 RyR1-S2844D 小鼠的震颤幅度,支持小脑 RyR1 渗漏直接引起震颤。用一种新型 RyR1 通道稳定化合物 Rycal 治疗 RyR1-S2844D 小鼠,可有效抑制小脑振荡活动、抑制震颤并使小脑 RyR1-calstabin1 结合正常化。这些数据共同支持应激相关 ER Ca 通过 RyR1 漏可能导致震颤病理生理学。

相似文献

引用本文的文献

本文引用的文献

5
Tremor Syndromes: An Updated Review.震颤综合征:最新综述
Front Neurol. 2021 Jul 26;12:684835. doi: 10.3389/fneur.2021.684835. eCollection 2021.
6
Genomic Markers for Essential Tremor.特发性震颤的基因组标记
Pharmaceuticals (Basel). 2021 May 27;14(6):516. doi: 10.3390/ph14060516.
7
Bidirectional learning in upbound and downbound microzones of the cerebellum.小脑上行和下行微区的双向学习。
Nat Rev Neurosci. 2021 Feb;22(2):92-110. doi: 10.1038/s41583-020-00392-x. Epub 2020 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验