Suppr超能文献

用于自动驾驶的具有可学习成本函数的可微集成运动预测与规划

Differentiable Integrated Motion Prediction and Planning With Learnable Cost Function for Autonomous Driving.

作者信息

Huang Zhiyu, Liu Haochen, Wu Jingda, Lv Chen

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):15222-15236. doi: 10.1109/TNNLS.2023.3283542. Epub 2024 Oct 29.

Abstract

Predicting the future states of surrounding traffic participants and planning a safe, smooth, and socially compliant trajectory accordingly are crucial for autonomous vehicles (AVs). There are two major issues with the current autonomous driving system: the prediction module is often separated from the planning module, and the cost function for planning is hard to specify and tune. To tackle these issues, we propose a differentiable integrated prediction and planning (DIPP) framework that can also learn the cost function from data. Specifically, our framework uses a differentiable nonlinear optimizer as the motion planner, which takes as input the predicted trajectories of surrounding agents given by the neural network and optimizes the trajectory for the AV, enabling all operations to be differentiable, including the cost function weights. The proposed framework is trained on a large-scale real-world driving dataset to imitate human driving trajectories in the entire driving scene and validated in both open-loop and closed-loop manners. The open-loop testing results reveal that the proposed method outperforms the baseline methods across a variety of metrics and delivers planning-centric prediction results, allowing the planning module to output trajectories close to those of human drivers. In closed-loop testing, the proposed method outperforms various baseline methods, showing the ability to handle complex urban driving scenarios and robustness against the distributional shift. Importantly, we find that joint training of planning and prediction modules achieves better performance than planning with a separate trained prediction module in both open-loop and closed-loop tests. Moreover, the ablation study indicates that the learnable components in the framework are essential to ensure planning stability and performance. Code and Supplementary Videos are available at https://mczhi.github.io/DIPP/.

摘要

预测周围交通参与者的未来状态并据此规划安全、顺畅且符合社会规范的轨迹,对于自动驾驶车辆(AV)至关重要。当前的自动驾驶系统存在两个主要问题:预测模块通常与规划模块分离,并且规划的成本函数难以确定和调整。为了解决这些问题,我们提出了一种可微的集成预测与规划(DIPP)框架,该框架还可以从数据中学习成本函数。具体而言,我们的框架使用可微非线性优化器作为运动规划器,它将神经网络给出的周围智能体的预测轨迹作为输入,并为自动驾驶车辆优化轨迹,使所有操作(包括成本函数权重)都可微。所提出的框架在大规模真实世界驾驶数据集上进行训练,以模仿整个驾驶场景中的人类驾驶轨迹,并以开环和闭环方式进行验证。开环测试结果表明,所提出的方法在各种指标上均优于基线方法,并提供以规划为中心的预测结果,使规划模块能够输出接近人类驾驶员的轨迹。在闭环测试中,所提出的方法优于各种基线方法,显示出处理复杂城市驾驶场景的能力以及对分布变化的鲁棒性。重要的是,我们发现在开环和闭环测试中,规划和预测模块的联合训练比使用单独训练的预测模块进行规划具有更好的性能。此外,消融研究表明框架中的可学习组件对于确保规划稳定性和性能至关重要。代码和补充视频可在https://mczhi.github.io/DIPP/获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验