Suppr超能文献

3D视觉显著性:一种独立的感知度量还是二维图像显著性的衍生物?

3D Visual Saliency: An Independent Perceptual Measure or a Derivative of 2D Image Saliency?

作者信息

Song Ran, Zhang Wei, Zhao Yitian, Liu Yonghuai, Rosin Paul L

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Nov;45(11):13083-13099. doi: 10.1109/TPAMI.2023.3287356. Epub 2023 Oct 3.

Abstract

While 3D visual saliency aims to predict regional importance of 3D surfaces in agreement with human visual perception and has been well researched in computer vision and graphics, latest work with eye-tracking experiments shows that state-of-the-art 3D visual saliency methods remain poor at predicting human fixations. Cues emerging prominently from these experiments suggest that 3D visual saliency might associate with 2D image saliency. This paper proposes a framework that combines a Generative Adversarial Network and a Conditional Random Field for learning visual saliency of both a single 3D object and a scene composed of multiple 3D objects with image saliency ground truth to 1) investigate whether 3D visual saliency is an independent perceptual measure or just a derivative of image saliency and 2) provide a weakly supervised method for more accurately predicting 3D visual saliency. Through extensive experiments, we not only demonstrate that our method significantly outperforms the state-of-the-art approaches, but also manage to answer the interesting and worthy question proposed within the title of this paper.

摘要

虽然三维视觉显著性旨在根据人类视觉感知预测三维表面的区域重要性,并且在计算机视觉和图形学领域已得到充分研究,但最新的眼动追踪实验表明,最先进的三维视觉显著性方法在预测人类注视点方面仍然表现不佳。这些实验中突出出现的线索表明,三维视觉显著性可能与二维图像显著性相关。本文提出了一个框架,该框架结合了生成对抗网络和条件随机场,用于学习单个三维物体以及由多个三维物体组成的场景的视觉显著性,并以图像显著性真值为基础,以便:1)研究三维视觉显著性是否是一种独立的感知度量,还是仅仅是图像显著性的衍生物;2)提供一种弱监督方法,以更准确地预测三维视觉显著性。通过大量实验,我们不仅证明了我们的方法显著优于最先进的方法,而且成功回答了本文标题中提出的有趣且有价值的问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验