Suppr超能文献

从模糊到清晰:一种用于全向图像显著性预测的新型迭代记忆回顾涌现模型

From Haziness to Clarity: A Novel Iterative Memory-Retrospective Emergence Model for Omnidirectional Image Saliency Prediction.

作者信息

Zhu Dandan, Zhang Kaiwei, Min Xiongkuo, Zhai Guangtao, Yang Xiaokang

出版信息

IEEE Trans Image Process. 2025;34:3944-3959. doi: 10.1109/TIP.2025.3578264.

Abstract

To achieve saliency prediction in omnidirectional images (ODIs), the majority of prior works typically adopt the convolutional neural networks (CNNs)-based saliency models to extract semantic features to predict prominent regions in ODIs. Albeit achieving substantially performance gains, these works all employed purely visual computing paradigms and ignore to explore the nature of human visual attention mechanisms. In other words, existing saliency prediction works for ODIs are insufficient to capture the biological characteristics of the visual attention mechanism in the human brain. To establish a more explicit link between saliency prediction performance and brain-like visual attention mechanism, we simulate the mechanism of human retrospective memory in neuropsychology and propose IMRE model, a novel iterative memory-retrospective emergence model can predict and infer the salient features by recalling previously learned information. In IMRE model, we introduce four key modules to simulate the visual attention mechanism for predicting human fixations in the human brain. Firstly, the visual stimulus response module is designed to effectively extract semantic features and capture the intricate relationship between these features, acting as the human visual cortex. Secondly, the retrospective integration module serves to distill valuable information from a fuzzy memory ensemble, resembling the role of the basal ganglia in the neural system. Thirdly, the memory bank module explicitly records and stores subconscious response information and learned knowledge, acting like the hippocampus in neural system. Lastly, the prospective inference module accurately infers saliency maps from the refined useful information, resembling the role of the prefrontal cortex. During prediction, we utilize the introduced memory bank to retrieve and recall previously learned information, which simulates the process of memory emergence from haziness to clarity. Such a process aligns with the retrospective memory mechanism of the human brain. To validate the superiority of the proposed model in ODIs saliency prediction tasks, we conduct extensive experiments on two benchmark datasets. Experiments show impressive performances that IMRE model outperforms other state-of-the-art methods across all benchmark datasets. Importantly, experiments also highlight the IMRE model's ability to trace back to specific instances during prediction, thereby reducing model inference costs and enhancing interpretability.

摘要

为了在全向图像(ODI)中实现显著性预测,大多数先前的工作通常采用基于卷积神经网络(CNN)的显著性模型来提取语义特征,以预测ODI中的突出区域。尽管取得了显著的性能提升,但这些工作都采用了纯粹的视觉计算范式,而忽略了探索人类视觉注意机制的本质。换句话说,现有的ODI显著性预测工作不足以捕捉人类大脑中视觉注意机制的生物学特征。为了在显著性预测性能和类脑视觉注意机制之间建立更明确的联系,我们模拟了神经心理学中人类回顾性记忆的机制,并提出了IMRE模型,这是一种新颖的迭代记忆-回顾性涌现模型,它可以通过回忆先前学到的信息来预测和推断显著特征。在IMRE模型中,我们引入了四个关键模块来模拟人类大脑中预测人类注视点的视觉注意机制。首先,视觉刺激响应模块旨在有效地提取语义特征并捕捉这些特征之间的复杂关系,充当人类视觉皮层。其次,回顾性整合模块用于从模糊的记忆集合中提炼有价值的信息,类似于神经系统中基底神经节的作用。第三,记忆库模块明确记录和存储潜意识响应信息和学到的知识,类似于神经系统中海马体的作用。最后,前瞻性推理模块从提炼后的有用信息中准确推断显著性图,类似于前额叶皮层的作用。在预测过程中,我们利用引入的记忆库来检索和回忆先前学到的信息,这模拟了记忆从模糊到清晰的涌现过程。这样的过程与人类大脑的回顾性记忆机制相一致。为了验证所提出模型在ODI显著性预测任务中的优越性,我们在两个基准数据集上进行了广泛的实验。实验表明,IMRE模型在所有基准数据集上均优于其他现有最先进方法,表现令人印象深刻。重要的是,实验还突出了IMRE模型在预测过程中追溯到特定实例的能力,从而降低了模型推理成本并提高了可解释性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验