Suppr超能文献

在峰值力敲击模式下通过原子力显微镜测定分子结的电学和热电性质。

Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping mode.

作者信息

Wang Xintai, Lamantia Angelo, Jay Michael, Sadeghi Hatef, Lambert Colin J, Kolosov Oleg V, Robinson Benjamin J

机构信息

Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom.

School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, People's Republic of China.

出版信息

Nanotechnology. 2023 Jul 7;34(38). doi: 10.1088/1361-6528/acdf67.

Abstract

Molecular thin films, such as self-assembled monolayers (SAMs), offer the possibility of translating the optimised thermophysical and electrical properties of high-Seebeck-coefficient single molecules to scalable device architectures. However, for many scanning probe-based approaches attempting to characterise such SAMs, there remains a significant challenge in recovering single-molecule equivalent values from large-area films due to the intrinsic uncertainty of the probe-sample contact area coupled with film damage caused by contact forces. Here we report a new reproducible non-destructive method for probing the electrical and thermoelectric (TE) properties of small assemblies (10-10) of thiol-terminated molecules arranged within a SAM on a gold surface, and demonstrate the successful and reproducible measurements of the equivalent single-molecule electrical conductivity and Seebeck values. We have used a modified thermal-electric force microscopy approach, which integrates the conductive-probe atomic force microscope, a sample positioned on a temperature-controlled heater, and a probe-sample peak-force feedback that interactively limits the normal force across the molecular junctions. The experimental results are interpreted by density functional theory calculations allowing quantification the electrical quantum transport properties of both single molecules and small clusters of molecules. Significantly, this approach effectively eliminates lateral forces between probe and sample, minimising disruption to the SAM while enabling simultaneous mapping of the SAMs nanomechanical properties, as well as electrical and/or TE response, thereby allowing correlation of the film properties.

摘要

分子薄膜,如自组装单分子层(SAMs),提供了将高塞贝克系数单分子的优化热物理和电学性质转化为可扩展器件架构的可能性。然而,对于许多基于扫描探针的试图表征此类SAMs的方法而言,由于探针 - 样品接触面积的固有不确定性以及接触力导致的薄膜损伤,从大面积薄膜中恢复单分子等效值仍然存在重大挑战。在此,我们报告了一种新的可重复的非破坏性方法,用于探测排列在金表面的SAM内的硫醇封端分子的小聚集体(10 - 10)的电学和热电(TE)性质,并展示了等效单分子电导率和塞贝克值的成功且可重复的测量。我们使用了一种改进的热电力显微镜方法,该方法集成了导电探针原子力显微镜、放置在温度控制加热器上的样品以及交互式限制分子结上法向力的探针 - 样品峰值力反馈。通过密度泛函理论计算对实验结果进行解释,从而能够量化单分子和小分子簇的电量子传输性质。重要的是,这种方法有效地消除了探针与样品之间的横向力,在最小化对SAM的干扰的同时,能够同时绘制SAM的纳米力学性质以及电学和/或TE响应图,从而实现薄膜性质的相关性分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验