Estación Experimental de Aula Dei, EEAD-CSIC, Avda. Montañana 1005, 50059, Zaragoza, Spain.
School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA.
Environ Res. 2023 Sep 15;233:116451. doi: 10.1016/j.envres.2023.116451. Epub 2023 Jun 17.
To ensure sustainable agricultural management, there is a need not only to quantify soil erosion rates but also to obtain information on the status of soil water content and soil loss under different soil types and land uses. A clear understanding of the temporal dynamics and the soil moisture spatial variability (SMSV) will help to control soil degradation by hydrological processes. This study represents the first attempt connecting cosmic-ray neutron sensors (CRNS) with soil erosion research, a novel approach to explore the complex relationships between soil water content (SWC) and soil redistribution processes using two of the most powerful nuclear techniques, CRNS and fallout Cs. Our preliminary results indicate that CRNS captured soil moisture dynamics along the study toposequence and demonstrated the sensitivity of neutron sensors to investigate the effect of parent material on soil water content. The Empirical Orthogonal Function (EOF) analysis of the comprehensive data from seven CRNS surveys revealed that one dominant spatial structure (EOF1) explains 89.2% of SMSV. The soil redistribution rates estimated with Cs at the nine locations along the hillslope, together with local factors related to soil properties (SOC, soil depth, hydraulic conductivity) and land use showed significant correlations with EOF. This study provides strong field evidence that soil type significantly affect SMSV, highlighting the key impact on soil erosion and sedimentation rates. Nevertheless, more research is needed to investigate the specific contributions of soil properties to the spatial variability of soil moisture and their subsequent effects on soil redistribution dynamics of interest for soil management.
为了确保可持续的农业管理,不仅需要量化土壤侵蚀速率,还需要获取不同土壤类型和土地利用方式下土壤含水量和土壤流失状况的信息。清楚了解时间动态和土壤水分空间变异性(SMSV)将有助于控制水文过程引起的土壤退化。本研究首次尝试将宇宙射线中子传感器(CRNS)与土壤侵蚀研究联系起来,这是一种利用两种最强大的核技术——CRNS 和沉降铯来探索土壤含水量与土壤再分布过程之间复杂关系的新方法。我们的初步结果表明,CRNS 捕捉到了沿研究地形序列的土壤水分动态,并展示了中子传感器探测母质对土壤含水量影响的敏感性。对来自七个 CRNS 调查的综合数据进行的经验正交函数(EOF)分析表明,一个主要的空间结构(EOF1)解释了 89.2%的 SMSV。在山坡上九个位置用 Cs 估算的土壤再分布速率,以及与土壤特性(SOC、土壤深度、水力传导率)和土地利用相关的局部因素,与 EOF 呈显著相关。本研究提供了强烈的现场证据,表明土壤类型显著影响 SMSV,突出了其对土壤侵蚀和沉积速率的关键影响。然而,需要进一步研究土壤特性对土壤水分空间变异性的具体贡献及其对土壤管理中感兴趣的土壤再分布动力学的后续影响。