文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用机器学习和深度学习技术评估脑卒中后上肢本体感觉障碍。

The use of machine learning and deep learning techniques to assess proprioceptive impairments of the upper limb after stroke.

机构信息

Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.

出版信息

J Neuroeng Rehabil. 2023 Jan 27;20(1):15. doi: 10.1186/s12984-023-01140-9.


DOI:10.1186/s12984-023-01140-9
PMID:36707846
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9881388/
Abstract

BACKGROUND: Robots can generate rich kinematic datasets that have the potential to provide far more insight into impairments than standard clinical ordinal scales. Determining how to define the presence or absence of impairment in individuals using kinematic data, however, can be challenging. Machine learning techniques offer a potential solution to this problem. In the present manuscript we examine proprioception in stroke survivors using a robotic arm position matching task. Proprioception is impaired in 50-60% of stroke survivors and has been associated with poorer motor recovery and longer lengths of hospital stay. We present a simple cut-off score technique for individual kinematic parameters and an overall task score to determine impairment. We then compare the ability of different machine learning (ML) techniques and the above-mentioned task score to correctly classify individuals with or without stroke based on kinematic data. METHODS: Participants performed an Arm Position Matching (APM) task in an exoskeleton robot. The task produced 12 kinematic parameters that quantify multiple attributes of position sense. We first quantified impairment in individual parameters and an overall task score by determining if participants with stroke fell outside of the 95% cut-off score of control (normative) values. Then, we applied five machine learning algorithms (i.e., Logistic Regression, Decision Tree, Random Forest, Random Forest with Hyperparameters Tuning, and Support Vector Machine), and a deep learning algorithm (i.e., Deep Neural Network) to classify individual participants as to whether or not they had a stroke based only on kinematic parameters using a tenfold cross-validation approach. RESULTS: We recruited 429 participants with neuroimaging-confirmed stroke (< 35 days post-stroke) and 465 healthy controls. Depending on the APM parameter, we observed that 10.9-48.4% of stroke participants were impaired, while 44% were impaired based on their overall task score. The mean performance metrics of machine learning and deep learning models were: accuracy 82.4%, precision 85.6%, recall 76.5%, and F1 score 80.6%. All machine learning and deep learning models displayed similar classification accuracy; however, the Random Forest model had the highest numerical accuracy (83%). Our models showed higher sensitivity and specificity (AUC = 0.89) in classifying individual participants than the overall task score (AUC = 0.85) based on their performance in the APM task. We also found that variability was the most important feature in classifying performance in the APM task. CONCLUSION: Our ML models displayed similar classification performance. ML models were able to integrate more kinematic information and relationships between variables into decision making and displayed better classification performance than the overall task score. ML may help to provide insight into individual kinematic features that have previously been overlooked with respect to clinical importance.

摘要

背景:机器人可以生成丰富的运动学数据集,这些数据有可能比标准的临床等级量表提供更多关于损伤的信息。然而,确定如何使用运动学数据来定义个体是否存在损伤可能具有挑战性。机器学习技术为解决这一问题提供了一种潜在的解决方案。在本研究中,我们使用机器人手臂位置匹配任务来检查中风幸存者的本体感受。50-60%的中风幸存者存在本体感受障碍,并且与较差的运动恢复和更长的住院时间有关。我们提出了一种简单的个体运动学参数和整体任务得分的截断评分技术,以确定损伤。然后,我们比较了不同机器学习 (ML) 技术和上述任务得分的能力,以基于运动学数据正确分类有无中风的个体。 方法:参与者在一个外骨骼机器人中执行手臂位置匹配 (APM) 任务。该任务产生了 12 个运动学参数,量化了位置感觉的多个属性。我们首先通过确定中风参与者是否落在控制(正常)值的 95%截断分数之外,来量化个体参数和整体任务得分中的损伤情况。然后,我们应用了五种机器学习算法(即逻辑回归、决策树、随机森林、随机森林与超参数调整和支持向量机),以及一种深度学习算法(即深度神经网络),通过十折交叉验证方法,仅基于运动学参数来分类个体参与者是否患有中风。 结果:我们招募了 429 名经神经影像学证实的中风(中风后 <35 天)患者和 465 名健康对照组。根据 APM 参数,我们观察到 10.9-48.4%的中风参与者存在损伤,而 44%的参与者根据其整体任务得分存在损伤。机器学习和深度学习模型的平均性能指标为:准确率 82.4%、精度 85.6%、召回率 76.5%和 F1 分数 80.6%。所有机器学习和深度学习模型的分类准确率都相似;然而,随机森林模型的准确率最高(83%)。我们的模型在基于 APM 任务的表现对个体参与者进行分类时,其敏感性和特异性(AUC=0.89)均高于整体任务得分(AUC=0.85)。我们还发现,变异性是区分 APM 任务表现的最重要特征。 结论:我们的 ML 模型表现出相似的分类性能。与整体任务得分相比,ML 模型能够将更多的运动学信息和变量之间的关系整合到决策中,并表现出更好的分类性能。ML 可能有助于深入了解以前在临床重要性方面被忽视的个体运动学特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/6952b42485b2/12984_2023_1140_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/c75ddc98fe8a/12984_2023_1140_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/a19944af54f8/12984_2023_1140_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/9eaf60d80f2f/12984_2023_1140_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/9e6d3c620e30/12984_2023_1140_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/4484651e05a4/12984_2023_1140_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/6952b42485b2/12984_2023_1140_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/c75ddc98fe8a/12984_2023_1140_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/a19944af54f8/12984_2023_1140_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/9eaf60d80f2f/12984_2023_1140_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/9e6d3c620e30/12984_2023_1140_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/4484651e05a4/12984_2023_1140_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb89/9881388/6952b42485b2/12984_2023_1140_Fig6_HTML.jpg

相似文献

[1]
The use of machine learning and deep learning techniques to assess proprioceptive impairments of the upper limb after stroke.

J Neuroeng Rehabil. 2023-1-27

[2]
A composite robotic-based measure of upper limb proprioception.

J Neuroeng Rehabil. 2017-11-13

[3]
The independence of impairments in proprioception and visuomotor adaptation after stroke.

J Neuroeng Rehabil. 2024-5-18

[4]
Clinical, Neuroimaging and Robotic Measures Predict Long-Term Proprioceptive Impairments following Stroke.

Brain Sci. 2023-6-15

[5]
Movement kinematics and proprioception in post-stroke spasticity: assessment using the Kinarm robotic exoskeleton.

J Neuroeng Rehabil. 2019-11-21

[6]
Robotic tests for position sense and movement discrimination in the upper limb reveal that they each are highly reproducible but not correlated in healthy individuals.

J Neuroeng Rehabil. 2020-7-25

[7]
A postural unloading task to assess fast corrective responses in the upper limb following stroke.

J Neuroeng Rehabil. 2019-1-28

[8]
Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator.

PLoS One. 2017-11-21

[9]
Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors.

J Neuroeng Rehabil. 2021-5-10

[10]
The Arm Movement Detection (AMD) test: a fast robotic test of proprioceptive acuity in the arm.

J Neuroeng Rehabil. 2017-6-28

引用本文的文献

[1]
Movement Impairments May Not Preclude Visuomotor Adaptation After Stroke.

Brain Sci. 2025-6-8

[2]
The impact of proprioception impairment on gait function in stroke survivors: a comprehensive review.

Front Neurol. 2025-5-12

[3]
Towards Transforming Neurorehabilitation: The Impact of Artificial Intelligence on Diagnosis and Treatment of Neurological Disorders.

Biomedicines. 2024-10-21

[4]
Bibliometric and visualized analysis of the application of artificial intelligence in stroke.

Front Neurosci. 2024-9-11

[5]
The independence of impairments in proprioception and visuomotor adaptation after stroke.

J Neuroeng Rehabil. 2024-5-18

本文引用的文献

[1]
Cross-validation of predictive models for functional recovery after post-stroke rehabilitation.

J Neuroeng Rehabil. 2022-9-7

[2]
Investigating the neuroanatomy underlying proprioception using a stroke model.

J Neurol Sci. 2021-11-15

[3]
The Comparison and Interpretation of Machine-Learning Models in Post-Stroke Functional Outcome Prediction.

Diagnostics (Basel). 2021-9-28

[4]
A guide to machine learning for biologists.

Nat Rev Mol Cell Biol. 2022-1

[5]
Explicit motor sequence learning after stroke: a neuropsychological study.

Exp Brain Res. 2021-7

[6]
Principal Components Analysis Using Data Collected From Healthy Individuals on Two Robotic Assessment Platforms Yields Similar Behavioral Patterns.

Front Hum Neurosci. 2021-5-6

[7]
Detection and Classification of Stroke Gaits by Deep Neural Networks Employing Inertial Measurement Units.

Sensors (Basel). 2021-3-7

[8]
Machine Learning: Algorithms, Real-World Applications and Research Directions.

SN Comput Sci. 2021

[9]
Infectious disease outbreak prediction using media articles with machine learning models.

Sci Rep. 2021-2-24

[10]
Artificial intelligence in drug discovery and development.

Drug Discov Today. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索