Li Kaifeng, Zhang Jiaqi, Chen Yuang, Pan Jianyong, Zheng Yufan, Xu Shuangjie, Zhao Run, Li Mengsha, Qi Ruijuan, Huang Rong, Yan Zhibo, Yu Pu, Liu Jun-Ming, MacManus-Driscoll Judith L, Yang Hao, Li Weiwei
College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
College of Integrated Circuits, MIIT Key Laboratory of Aerospace Integrated Circuits and Microsystem, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
Sci Adv. 2025 Aug 15;11(33):eadw8513. doi: 10.1126/sciadv.adw8513. Epub 2025 Aug 13.
Resistive switching memory represents a potentially transformative advancement in next-generation nonvolatile memory and neuromorphic technologies. Recently, vertically aligned nanocomposites (VANs) have been proposed to optimize the memristive performance of single-phase memories. However, the microscopic mechanism of dynamic resistive switching in these VAN architectures is still elusive. Here, we built up a VAN structure with brownmillerite SrCoO (BM-SCO) and magnesium oxide (MgO), where the topological phase transformation in BM-SCO provides a well-defined facile vertical path for oxygen ion migration within the vertical interfaces between BM-SCO and MgO phases. Compared with the BM-SCO memristor, the (BM-SCO):(MgO) VAN memristor exhibits advantages in resistive switching and simulates various synaptic functions, achieving high accuracy in image recognition tasks. Using in situ scanning transmission electron microscopy, we revealed the microscopic mechanism of oxygen ion migration dynamics along the vertical interfaces. Our work substantially advances the understanding of resistive switching mechanism and further demonstrates the great potential of VAN architectures for practical application in high-performance resistive memory.
电阻开关存储器代表了下一代非易失性存储器和神经形态技术中一项具有潜在变革性的进展。最近,垂直排列的纳米复合材料(VANs)已被提出用于优化单相存储器的忆阻性能。然而,这些VAN结构中动态电阻开关的微观机制仍然难以捉摸。在此,我们构建了一种由钙钛矿型锶钴氧化物(BM-SCO)和氧化镁(MgO)组成的VAN结构,其中BM-SCO中的拓扑相变在BM-SCO和MgO相之间的垂直界面内为氧离子迁移提供了一条明确的便捷垂直路径。与BM-SCO忆阻器相比,(BM-SCO):(MgO)VAN忆阻器在电阻开关方面表现出优势,并模拟了各种突触功能,在图像识别任务中实现了高精度。通过原位扫描透射电子显微镜,我们揭示了氧离子沿垂直界面迁移动力学的微观机制。我们的工作极大地推进了对电阻开关机制的理解,并进一步证明了VAN结构在高性能电阻存储器实际应用中的巨大潜力。