Ding Bingyu, Jiang Wenzhuo, Ouyang Ting, Xu Helin
Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
Bioact Mater. 2025 Jun 10;52:244-270. doi: 10.1016/j.bioactmat.2025.06.016. eCollection 2025 Oct.
Coacervate microdroplets, formed via liquid-liquid phase separation, represent a transformative platform in biomacromolecule delivery due to their unique physicochemical properties, such as ultralow interfacial tension, high cargo capacity, and biomimetic cellular condensate-like behavior. This review systematically explored the design principles, driving forces (electrostatic, hydrophobic, and hydrogen-bond interactions) and physicochemical properties of coacervates droplets (microstructure, ultralow interfacial tension, coalescence). We highlighted diverse coacervate materials, including natural polysaccharides, synthetic polymers, polyphenols, nucleotides, proteins/peptides and inorganic polyphosphates, alongside functionalization strategies for controlled release ( enzymatic/magnetic triggers). The advance in coacervate-derived systems, nanoparticles, microdroplets, interface-coated microdroplets, hydrogel, and biomedical devices have been discussed, emphasizing their advantages over conventional carriers. Breakthrough applications of coacervate systems in biomacromolecule or live cells delivery are further summarized in terms of sustained growth factor release for tissue regeneration, achieving cytosolic delivery with minimal toxicity, delivering probiotics to enhance gastrointestinal survival, and mimicking native extracellular matrices to deliver stem cells. Alternatively, pitfalls of coacervate systems for drug delivery, thermodynamic instability, cargo leakage, and immunogenicity were analyzed and some potential strategies like surface lipid coating or PEGylation, have been put forward. Bridging fundamental insights with translational needs, this work outlined a roadmap for developing next-generation coacervates, emphasizing multicompartmental architectures for synthetic biology and precision therapeutics. Future directions include adaptive coacervates for personalized medicine, positioning coacervates as versatile tools for advancing regenerative medicine and targeted therapy.
通过液-液相分离形成的凝聚微滴,由于其独特的物理化学性质,如超低界面张力、高载药量以及类似生物模拟细胞凝聚物的行为,代表了生物大分子递送领域一个变革性的平台。本综述系统地探讨了凝聚微滴的设计原则、驱动力(静电、疏水和氢键相互作用)以及物理化学性质(微观结构、超低界面张力、聚并)。我们重点介绍了多种凝聚材料,包括天然多糖、合成聚合物、多酚、核苷酸、蛋白质/肽和无机多磷酸盐,以及控释的功能化策略(酶促/磁触发)。还讨论了凝聚衍生系统、纳米颗粒、微滴、界面包覆微滴、水凝胶和生物医学装置的进展,强调了它们相对于传统载体的优势。凝聚系统在生物大分子或活细胞递送方面的突破性应用进一步总结为:用于组织再生的持续生长因子释放、以最小毒性实现胞质递送、递送益生菌以提高胃肠道存活率以及模拟天然细胞外基质以递送干细胞。此外,分析了凝聚系统用于药物递送的缺陷,如热力学不稳定性、载药泄漏和免疫原性,并提出了一些潜在策略,如表面脂质包覆或聚乙二醇化。这项工作将基础见解与转化需求联系起来,勾勒了开发下一代凝聚物的路线图,强调了用于合成生物学和精准治疗的多隔室结构。未来的方向包括用于个性化医疗的适应性凝聚物,将凝聚物定位为推进再生医学和靶向治疗的通用工具。