Suppr超能文献

通过一步C-N偶联实现法拉第效率63.5%和N选择性100%的电催化尿素合成。

Electrocatalytic Urea Synthesis with 63.5 % Faradaic Efficiency and 100 % N-Selectivity via One-step C-N coupling.

作者信息

Zhang Xiaoran, Zhu Xiaorong, Bo Shuowen, Chen Chen, Cheng Kai, Zheng Jianyun, Li Shuang, Tu Xiaojin, Chen Wei, Xie Chao, Wei Xiaoxiao, Wang Dongdong, Liu Yingying, Chen Pinsong, Jiang San Ping, Li Yafei, Liu Qinghua, Li Conggang, Wang Shuangyin

机构信息

State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

WA School of Mines: Minerals, Energy & Chemical Engineering, Curtin University, Perth, Western Australia, 6102, Australia.

出版信息

Angew Chem Int Ed Engl. 2023 Aug 14;62(33):e202305447. doi: 10.1002/anie.202305447. Epub 2023 Jul 7.

Abstract

Electrocatalytic urea synthesis via coupling N and CO provides an effective route to mitigate energy crisis and close carbon footprint. However, the difficulty on breaking N≡N is the main reason that caused low efficiencies for both electrocatalytic NH and urea synthesis, which is the bottleneck restricting their industrial applications. Herein, a new mechanism to overcome the inert of the nitrogen molecule was proposed by elongating N≡N instead of breaking N≡N to realize one-step C-N coupling in the process for urea production. We constructed a Zn-Mn diatomic catalyst with axial chloride coordination, Zn-Mn sites display high tolerance to CO poisoning and the Faradaic efficiency can even be increased to 63.5 %, which is the highest value that has ever been reported. More importantly, negligible N≡N bond breakage effectively avoids the generation of ammonia as intermediates, therefore, the N-selectivity in the co-electrocatalytic system reaches100 % for urea synthesis. The previous cognition that electrocatalysts for urea synthesis must possess ammonia synthesis activity has been broken. Isotope-labelled measurements and Operando synchrotron-radiation Fourier transform infrared spectroscopy validate that activation of N-N triple bond and nitrogen fixation activity arise from the one-step C-N coupling process of CO species with adsorbed N molecules.

摘要

通过耦合氮和一氧化碳进行电催化尿素合成提供了一条缓解能源危机和缩小碳足迹的有效途径。然而,打破N≡N键的困难是导致电催化合成氨和尿素效率低下的主要原因,这是限制它们工业应用的瓶颈。在此,提出了一种克服氮分子惰性的新机制,即在尿素生产过程中通过拉长N≡N键而不是打破N≡N键来实现一步碳-氮耦合。我们构建了一种具有轴向氯配位的锌-锰双原子催化剂,锌-锰位点对一氧化碳中毒具有高耐受性,法拉第效率甚至可以提高到63.5%,这是迄今为止报道的最高值。更重要的是,可忽略不计的N≡N键断裂有效地避免了氨作为中间体的生成,因此,在共电催化体系中尿素合成的氮选择性达到100%。尿素合成电催化剂必须具备合成氨活性这一先前的认知被打破。同位素标记测量和原位同步辐射傅里叶变换红外光谱证实,N-N三键的活化和固氮活性源于一氧化碳物种与吸附的氮分子的一步碳-氮耦合过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验