Yuan Menglei, Chen Junwu, Bai Yiling, Liu Zhanjun, Zhang Jingxian, Zhao Tongkun, Wang Qin, Li Shuwei, He Hongyan, Zhang Guangjin
CAS Key Laboratory of Green Process Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Center of Materials Science and Optoeletronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Angew Chem Int Ed Engl. 2021 May 3;60(19):10910-10918. doi: 10.1002/anie.202101275. Epub 2021 Apr 8.
Electrocatalytic C-N bond coupling to convert CO and N molecules into urea under ambient conditions is a promising alternative to harsh industrial processes. However, the adsorption and activation of inert gas molecules and then the driving of the C-N coupling reaction is energetically challenging. Herein, novel Mott-Schottky Bi-BiVO heterostructures are described that realize a remarkable urea yield rate of 5.91 mmol h g and a Faradaic efficiency of 12.55 % at -0.4 V vs. RHE. Comprehensive analysis confirms the emerging space-charge region in the heterostructure interface not only facilitates the targeted adsorption and activation of CO and N molecules on the generated local nucleophilic and electrophilic regions, but also effectively suppresses CO poisoning and the formation of endothermic *NNH intermediates. This guarantees the desired exothermic coupling of N=N intermediates and generated CO to form the urea precursor, NCON.
在环境条件下通过电催化C-N键偶联将CO和N分子转化为尿素是一种有前景的替代苛刻工业过程的方法。然而,惰性气体分子的吸附和活化以及随后C-N偶联反应的驱动在能量上具有挑战性。在此,描述了新型的莫特-肖特基Bi-BiVO异质结构,其在相对于可逆氢电极(RHE)为-0.4 V时实现了5.91 mmol h g的显著尿素产率和12.55%的法拉第效率。综合分析证实,异质结构界面中出现的空间电荷区不仅促进了CO和N分子在产生的局部亲核和亲电区域上的靶向吸附和活化,而且有效地抑制了CO中毒和吸热NNH中间体的形成。这保证了所需的N=N中间体与生成的CO的放热偶联,以形成尿素前体NCON*。